
mining social and cryptocurrency networks

ph.d. thesis

Author Ferenc Béres

Institute for Computer Science and Control

Eötvös Loránd Research Network

Supervisor András A. Benczúr

Institute for Computer Science and Control

Eötvös Loránd Research Network

DOI 10.15476/ELTE.2022.171

eötvös loránd university

doctoral school of informatics

2022

Acknowledgment

First and foremost, I would like to express my deepest gratitude to my supervisor András Benczúr

for his patience, assistance, and continuous guidance throughout the research process.

I am also grateful to my colleagues Domokos Miklós Kelen and Róbert Pálovics from our research

group at the Hungarian Institute for Computer Science and Control, who contributed greatly to

the success of my work.

My Thesis could not have been the same without István András Seres, with whom we had an

excellent working dynamics and addressed several open questions that fascinated the blockchain

community.

Finally, I would like to thank my family, especially my wife, Anilla Ella Szirtes, for her endless

support and encouragement during my studies. Not to mention the constant help with our little

children during the times of COVID-19 restrictions when I was working from home.

The research in this Thesis was supported by the Hungarian Ministry of Innovation and Tech-

nology NRDI O�ce within the framework of the Arti�cial Intelligence National Laboratory

Program.

i

ii

Contents

1 Introduction 1

1.1 Our contributions . 2

1.2 Presentation overview . 10

1.3 Credits . 11

2 Temporal networks 13

2.1 Edge streams . 13

2.2 Twitter Tennis data sets . 15

2.2.1 Data collection . 15

2.2.2 Dynamic node relevance label . 18

3 Temporal walk based centrality metric for graph streams 21

3.1 Our results . 22

3.2 Review of related work . 23

3.2.1 Path counting centrality metrics . 24

3.2.2 Temporal PageRank . 25

3.3 Temporal Katz centrality . 26

3.3.1 Update formula . 28

3.3.2 Time complexity . 29

3.3.3 Normalization for numeric stability . 31

3.3.4 Convergence properties . 33

3.4 Unsupervised evaluation . 35

3.4.1 Stability vs. changeability . 36

3.4.2 Adaptation to concept drift . 36

3.5 Supervised evaluation . 40

iii

3.5.1 Baseline metrics . 40

3.5.2 Results . 41

3.6 Conclusion . 45

4 Node embeddings in dynamic graphs 49

4.1 Our results . 49

4.2 Review of related work . 51

4.3 Dynamic Vector Space Embedding Methods in Edge Streams 52

4.3.1 Similarity based on reachability through short temporal walks 53

4.3.2 Online Learning of Second Order Node Similarity 59

4.4 Similarity Search Experiments . 63

4.4.1 Evaluation Metrics . 63

4.4.2 Baseline Models . 64

4.4.3 Results . 65

4.5 Conclusion . 71

5 Vaccine skepticism detection by network embedding 73

5.1 Introduction . 73

5.2 Data collection . 74

5.3 Results . 74

5.4 Conclusion . 77

6 Pro�ling and Deanonymizing Ethereum Users 79

6.1 Our results . 80

6.2 Background . 80

6.2.1 Ethereum basics . 81

6.2.2 Ethereum Name Service . 81

6.2.3 Non-custodial mixers . 82

6.3 Review of related work . 83

6.4 Data collection . 84

6.5 Evaluation measures . 86

6.6 Linking Ethereum accounts of the same user . 88

6.6.1 Ground truth data . 88

6.6.2 Time-of-day transaction activity . 89

iv

6.6.3 Gas price distribution . 89

6.6.4 Graph representation learning . 90

6.6.5 Evaluation . 91

6.7 Deanonymizing trustless mixing services . 94

6.7.1 Ground truth data . 94

6.7.2 Elapsed time between deposits and withdrawals, withdraw address reuse . 96

6.7.3 Deanonymization performance . 97

6.8 Maintaining privacy . 98

6.9 Conclusion . 100

7 Cryptoeconomic tra�c analysis of Bitcoin's Lightning network 101

7.1 Our results . 102

7.2 Background . 103

7.2.1 Payment channel networks . 103

7.2.2 Routing in LN and Fee Mechanism . 105

7.3 Review of related work . 105

7.4 Data collection . 107

7.4.1 Dynamics of LN . 108

7.4.2 LN snapshots with routing fees . 110

7.5 Lightning Network Tra�c Simulator . 111

7.5.1 Feasibility Validation and Choice of Parameters 114

7.5.2 Tra�c Simulator Response to Parameter Changes 115

7.6 Transaction Fee Competition . 118

7.7 Pro�tability Estimation of Central Routers . 121

7.8 Payment Privacy . 131

7.9 Conclusion . 135

Summary 137

List of abbreviations 142

Bibliography 143

v

vi

Chapter 1

Introduction

In the last decade, network science was �ourishing, since graph structures underlie several ap-

plications that we use during our daily routine. Social networks are probably the largest source

for graph data. Facebook and Instagram both gained billions of new active users during this

period1. Another important graph data source is related to mobility, �ights between cities, ride-

hailing, or route-planning applications. Finally, for most cryptocurrencies, there is an underlying

transaction network where users exchange their coins or other funds without any governmental

or third-party supervision. In contrast to most social network and user mobility platforms,

the user interactions for various cryptocurrency networks are available to everyone due to the

public nature of the blockchain. That is why Bitcoin and Ethereum, the two most well-known

cryptocurrency networks, are also in the focus of my research.

A general problem with graph data is that it cannot be fed to classical machine learning meth-

ods in a straightforward way. Algorithms like logistic regression, decision trees or deep neural

networks only work well with tabular data. Since the number of neighbors of a node can widely

vary, raw network data cannot be considered tabular. One possibility to solve general graph

mining tasks such as node classi�cation, link prediction, or community detection is to learn a

vector space representation of network nodes for downstream machine learning tasks. Research

in the related �eld of node embedding was recently catalyzed by the Word2Vec algorithm [93] for

learning word representations in human language text. The main idea of network embedding is

to explore the graph through multiple random walks and feed these node sequences to a neural

1https://www.businessofapps.com/data/facebook-statistics/, https://www.businessofapps.com/data/instagram-

statistics/

1

network architecture (e.g. Skip-Gram model) that learns a representation for every node. Since

the time complexity to embed a network is linear in the number of vertices, it can be deployed

for large networks with millions of nodes.

Unfortunately, linear time complexity in the number of nodes can be prohibitive for real-time

dynamic network applications. In many data-intensive tasks where interactions between network

participants are constantly arriving over time, we need to update graph mining models regularly

to capture the latest changes in the data distribution, such as sudden bursts in popularity or

some irregular network behavior. Fitting batch algorithms for large graph snapshots could cause

a signi�cant time-delay in the prediction. That is why online graph learning techniques are much

preferred in such highly dynamic scenarios.

The main goal of our research is to analyze and model user behavior in social and cryptocurrency

networks. Speci�cally, we intend to answer the following questions:

� What are the main advantages of online graph mining techniques over batch models for

large-scale social networks and how to best compare their performance? In our research,

we focus on graph centrality and node embedding techniques.

� How to mine cryptocurrency networks with novel network science tools to answer open

questions in the domain of cryptoeconomics and privacy?

By collecting various new Twitter and cryptocurrency network data sets, we were among the �rst

to deploy and analyze node embedding models in several network applications such as vaccine

skepticism detection or Ethereum address deanonymization.

Our �ndings are related to the �elds of network science and machine learning. In our work, we

analyze user interactions in social and cryptocurrency networks as well as user-related metadata

that we used to formulate supervised evaluation for most of the addressed graph mining tasks.

1.1 Our contributions

Next, we explain our main results one by one. For each topic, we list our main contributions

and the original source of publication. In Section 1.2, we also present the inter-relation of our

results.

2

Temporal networks

In Chapter 2, we introduce temporal networks by �rst laying out the theoretical background for

two dynamic graph computational models, the snapshot-based and the edge stream approaches.

In Section 2.1, we rigorously compare these concepts by following the arguments in our recent

tutorial:

András Benczúr, Ferenc Béres, Domokos Kelen, and Róbert Pálovics. Tutorial on graph

stream analytics. DEBS '21, page 168�171, New York, NY, USA, 2021. Association for

Computing Machinery.

In Section 2.2, we present our Twitter data sets that we collected to quantitatively analyze the

performance of selected online graph algorithms using the stream of @-mention edges. Our �rst

algorithm is a temporal walk based centrality metric (Chapter 3), and the other two are online

node embedding methods (Chapter 4).

We collected two data sets, RG17 and UO17, related to Roland-Garros 2017, the French Open

Tennis Tournament, and to US Open 2017, the United States Open Tennis Championship. For

both of these sport events, we collected tweets containing prede�ned hashtags, and then we

extracted the underlying at-mention network. The following properties make RG17 and UO17

highly suitable for evaluating algorithms on dynamic graphs:

� Temporal @-mention network: every at-mention link in the graph has a timestamp covering

a long time range.

� Large scale: both mention graph contains more than 300K edges and 70K nodes (Twitter

accounts).

� Dynamic temporal ground truth information available from an external source, which

makes supervised evaluation possible for edge stream based online graph algorithms. Based

on the o�cial event schedule, we compiled a binary node relevance label with daily granu-

larity for the nodes of the RG17 and UO17 mention networks.

We �rst introduced the RG17 and UO17 Twitter collections in

Ferenc Béres, Róbert Pálovics, Anna Oláh, and András A Benczúr. Temporal walk based

centrality metric for graph streams. Applied Network Science, 3(32):26, 2018.

Both of these data sets were included in a publication that received the best resource paper

3

award at CIKM '21,

Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Alexander Riedel,

Maria Astefanoaei, Oliver Kiss, Ferenc Béres, Guzmán López, Nicolas Collignon, and Rik

Sarkar. Pytorch geometric temporal: Spatiotemporal signal processing with neural machine

learning models. CIKM '21, page 4564�4573, New York, NY, USA, 2021. Association for

Computing Machinery.

Temporal walk based centrality metric for graph streams

b

a

c

c

b

d

c

e

t1 t2

t3

e

u

t1 < t 2 < t3 < t

t2 t3

t3

t4
t5

t5

t 4 < t5 < t

Fig. 1.1: De�nition of temporal Katz centrality: weighted sum of time-respecting paths ending

at node u up to time t.

In Chapter 3, we will investigate network centrality measures [24]. We propose the temporal

Katz centrality, an extension of the successful Katz index [72] suitable for dynamic graphs. As

illustrated in Figure 1.1, the temporal Katz centrality of node u at a given time t is the weighted

sum of all time-respecting paths that end in u up to time t.

Our contributions:

� Our centrality metric is online updateable, thus ideal for data-intensive applications. To the

best of our knowledge, only two previous studies [52,131] propose data stream updateable

centrality measures.

� Temporal Katz centrality incorporates arbitrary time decay functions that can be adapted

to the task in question.

� We conducted a supervised evaluation on our Twitter data collections introduced in Sec-

tion 2.2. Using only network centrality, we tried to detect daily tennis player accounts as

4

early as possible. Our measurements on the RG17 and UO17 data sets show that our

method, the temporal Katz centrality, outperforms both static and online baselines.

� Our further results include two convergence theorems that mathematically justify the con-

nection between our method and Katz index [72].

� Finally, we perform extensive parameter analysis for properties such as score variability

between consecutive snapshots as well as adaptation to concept drift.

This chapter is a summary of several papers presented at di�erent stages of our research,

Ferenc Béres and András A. Benczúr. Online centrality in temporally evolving networks.

In Book of Abstracts of the 6th International Conference on Complex Networks and Their

Applications, pages 184�186, 2017,

Ferenc Béres, Róbert Pálovics, and András A. Benczúr. Temporal walk based centrality

metric for graph streams. In 14th International Workshop on Mining and Learning with

Graphs, held in conjunction with KDD'18, 2018,

Ferenc Béres, Róbert Pálovics, Anna Oláh, and András A Benczúr. Temporal walk based

centrality metric for graph streams. Applied Network Science, 3(32):26, 2018.

Node embeddings in dynamic graphs

In Chapter 4, we investigate methods to encode (embed) the nodes of a dynamic network by

vectors in a low-dimensional vector space in a way that representations in the embedded space

re�ect the neighborhood or structural properties of the nodes in the original graph.

Over the last years, a myriad of static node embedding methods have been proposed and ap-

plied in node classi�cation and link prediction tasks. In our work, we propose two data stream

updateable node embedding methods, StreamWalk and Online Second Order Similarity, with

applications similar to static embedding models.

Our contributions in Chapter 4 are the following:

� We describe StreamWalk, an online node embedding algorithm. Similar to temporal Katz

centrality [20], StreamWalk is also based on time-respecting random walks.

� We describe Online Second Order Similarity, which directly learns the neighborhood sim-

ilarity of node pairs in the graph stream by approximating their neighborhood Jaccard

5

similarity at a given time.

� We conduct supervised node similarity search evaluation on our Twitter data collections

introduced in Section 2.2. We show that our models can e�ciently di�erentiate daily tennis

player accounts from other network participants. Our measurements on the RG17 and

UO17 data sets show that our online node embedding models outperform static baselines

such as LINE, node2vec or DeepWalk.

� Finally, we show that the combination of StreamWalk and Online Second Order Similarity

further improves the accuracy of similarity search.

We presented our initial work at a conference, while our �nal results were published in a journal:

Ferenc Béres, Róbert Pálovics, Domokos M. Kelen, Dávid Szabó, and András A. Benczúr.

Node embeddings in dynamic graphs. In Book of Abstracts of the 7th International Con-

ference on Complex Networks and Their Applications, pages 178�180, 2018,

Ferenc Béres, Domokos M. Kelen, Róbert Pálovics, and András A Benczúr. Node embed-

dings in dynamic graphs. Applied Network Science, 4(64):25, 2019.

Vaccine skepticism detection by network embedding

In Chapter 5, we deploy node embedding models for vaccine skepticism detection. We analyze

social network data related to Covid-19 vaccination. We focus on two groups of people commonly

referred to as pro-vaxxers and vax-skeptic users. In short, the �rst group supports vaccination,

while the second questions vaccine e�cacy or the need for general vaccination against Covid-

19. We intended to develop techniques that can e�ciently di�erentiate content based on the

expressed vaccine view.

Our contributions are the following:

� We collect and annotate a large Twitter data set related to Covid-19 vaccination.

� We quantitatively assess the performance of node embeddings for the task of vaccine skep-

ticism detection by deploying them on the reply network that we extracted from the data.

� By training a binary classi�er to predict the expressed vaccine view for each tweet, we

found that node embedding models can signi�cantly improve performance compared to

text-only approaches. Furthermore, they can even reveal pro-vaxxer and vax-skeptic user

6

Fig. 1.2: Vax-skeptic topic space uncovered by node embeddings. In the center, there are anti-

vaxxer topics (e.g. child death cases, fear from the mRNA technology) that are surrounded by

less o�ensive discussions (e.g. politics, medical arguments, immunity concerns).

clusters as well as their underlying topic hierarchy, see Figure 1.2.

� We released our data and source code on GitHub.

We presented our results at a conference:

Ferenc Béres, Rita Csoma, Tamás Vilmos Michaletzky, and András A. Benczúr. Vaccine

skepticism detection by network embedding. In Book of Abstracts of the 10th International

Conference on Complex Networks and Their Applications, pages 241�243, 2021.

Pro�ling and Deanonymizing Ethereum Users

Ethereum is the largest public blockchain by usage. It is an account-based cryptocurrency where

users store their assets in accounts that they tend to frequently re-use to interact with a wide

range of services and decentralized applications (e.g. games, exchanges). As it is a blockchain-

based cryptocurrency, the transaction history for each account is publicly observable.

We embed the nodes of the Ethereum transaction graph to pro�le and deanonymize Ethereum

users based on their network activity. The nodes in this graph are Ethereum addresses (accounts)

and the transactions are directed links between them. Each physical entity (e.g. users, compa-

nies) may own multiple addresses, and the exact address-entity relations are usually hidden from

the public. However, in this work, we reveal that node embedding models can e�ciently link

7

addresses that belong to the same user.

Co
m

bi
ne

d
Di

ff2
Ve

c
Ro

le
2V

ec
De

ep
W

al
k

W
al

kl
et

s
Ne

tM
F

Bo
os

tN
E

Gr
aR

ep
La

pl
ac

ia
n

Ei
g.

HO
PE

No
de

Sk
et

ch
NM

F-
AD

M
M

Gr
ap

hW
av

e0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

AU
C

Daily activity Norm. gas price

Fig. 1.3: Deanonymization task: �nd accounts of the same user. AUC is presented for 13 node

embedding models as well as time-of-day activity and gas price pro�le based baselines (horizontal

lines).

Our contributions in Chapter 6 are the following:

� We collect Ethereum related data from several sources, including Ethereum name service

(ENS), Etherscan blockchain explorer, Tornado Cash mixer contracts, and Twitter.

� Using ENS identi�ers as ground truth information, we quantitatively compare the proposed

models in a deanonymization task where we link accounts of the same user. As illustrated

in Figure 1.3, some node embedding methods signi�cantly outperform user activity based

baselines.

� As a direct application, we show that node embedding based pro�ling can signi�cantly de-

crease the privacy guarantees of the Tornado Cash (TC) mixer service, which was originally

proposed to obfuscate the relationship between addresses of the same user.

� Finally, in light of our results, we propose a few best practices for Ethereum users to follow

in order to increase their privacy.

Our results appeared in

8

Ferenc Béres, István András Seres, András A Benczúr, and Mikerah Quintyne-Collins.

Blockchain is watching you: Pro�ling and deanonymizing ethereum users. In 2021 IEEE In-

ternational Conference on Decentralized Applications and Infrastructures (DAPPS), pages

69�78, 2021.

Cryptoeconomic tra�c analysis of Bitcoin's Lightning network

In Chapter 7, we analyze the Lightning Network (LN), a payment channel network that was

designed to solve Bitcoin's scalability issues. It allows participants to exchange transactions

locally, without broadcasting them to the blockchain. Thus, LN opens the way for instant low-

value payments with negligible fees.

In a payment channel network, nodes are users and the edges are payment channels. A given

node can issue payments only to those participants that it can reach through a series of edges.

Intermediary nodes of a given payment path can independently decide the transaction fees that

they charge for relaying the payment.

In this work, we designed a payment tra�c simulator to analyze the pro�tability of central router

nodes, as original LN payments are cryptographically hidden from us. A main contribution

compared to previous simulation-based studies was that we managed to identify more than 100

merchant nodes on LN. By simulating payments from ordinary users towards merchants, we

quantitatively con�rmed several concerns related to LN that the cryptocurrency community had

been speculating about for a long time.

By simulating payments at di�erent value and daily transaction volume levels, we made several

observations related to the state of LN in 2019:

� Low routing fees do not su�ciently compensate the routing nodes that essentially hold

the network together. Based on our measurements, the annual return of investment (RoI)

for every major router is less than 4%. However, they could achieve signi�cantly better

RoI, shown in Figure 1.4, by reducing capacity on their currently over-provisioned payment

channels.

� We further assess the importance of router entities by monitoring the changes in the number

of failed payments after we exclude them one by one from LN.

� Finally, we observe that despite onion routing, routers can gather strong statistical evidence

9

10 3 10 2 10 1 100

Fraction of original capacity

0.0

2.5

5.0

7.5

10.0

12.5

15.0
Fa

ct
or

 o
f g

ai
n

in
 R

oI
name
lnbig.com
rompert.com
zigzag.io
yalls.org
LightningPowerUsers.com
ACINQ
1ML.com node ALPHA
LightningTo.Me
Bitrefill.com

Fig. 1.4: RoI gain after reducing node capacities to the given fractions.

about the sender and receiver of LN payments, since a substantial portion of payments

involves only a single routing intermediary. Thus we propose to use longer, suboptimal

paths to gain more privacy. Our genetic algorithm based solution only marginally increases

the costs for LN users.

Our results were published in

Ferenc Béres, István András Seres, and András A Benczúr. A cryptoeconomic tra�c anal-

ysis of bitcoin's lightning network. Cryptoeconomic Systems, 1(1), 2021.

1.2 Presentation overview

The dependence of the thesis chapters is visualized in Figure 1.5.

In Chapters 2�4, we analyze temporal networks. First, we give the theoretical background in

Chapter 2, where we also introduce our Twitter data collections that we use to evaluate dynamic

graph algorithms in multiple works. Then in Chapters 3�4, we propose online updateable graph

algorithms that perform well in data-intensive applications.

In Chapters 6�7, we turn to the research of cryptocurrency networks. Using di�erent graph

mining tools, we quantitatively analyze the Ethereum transaction graph (Chapter 6) as well as

the Bitcoin Lightning Network (Chapter 7) to gain valuable insights related to user behavior and

10

Temporal networks

Chapter 2

Node embeddings

Cryptocurrency networks

Chapter 3

Chapter 4 Chapter 6

Chapter 7

Chapter 5

Fig. 1.5: Structure of the presented work.

privacy.

Our research on these domains is connected by the theory of node embeddings that we assess in

Chapters 4�6. Our work explores several problems where we successfully applied node embedding

algorithms. For example, the applicability of node embedding in temporally evolving networks

(Chapter 4), vaccine skepticism detection (Chapter 5), and Ethereum account deanonymization

(Chapter 6). For some of these tasks, we were the �rst to deploy these techniques.

1.3 Credits

The �rst part of my research is related to temporally evolving networks. We developed new

online network centrality and node embedding techniques that outperformed existing snapshot-

based approaches. In this work, I collected and annotated dynamic network data, implemented

and measured most of the algorithms. Róbert Pálovics and Domokos Miklós Kelen participated

in node embedding model implementations [19]. They also veri�ed experimental results and

contributed to algorithm descriptions in our articles [19,20].

My research related to cryptocurrency networks published in [32, 33] is joint work with István

András Seres, who contributed with his knowledge on cryptocurrencies, de�ned the problems, and

described the cryptocurrency related background in both papers. The analysis of the basic graph

properties of the Bitcoin Lightning Network and their change in time in Section 7.4.1 and [32]

is also his contribution. In our works, I designed, implemented, and evaluated the experiments

related to tra�c simulation and node embedding. Finally, I augmented and collected Bitcoin and

11

Ethereum related cryptocurrency network data sets that are rigorously assessed in my Thesis.

12

Chapter 2

Temporal networks

Most of the networks in nature, society, and technology change over time. In graph theory termi-

nology, nodes and edges get additional temporal characteristics and form a temporal network [37].

A large variety of temporal network algorithms have appeared for connectivity, spanning trees,

matchings, and many more, which are surveyed, for example, in [1,66]. In Section 2.1, we intro-

duce two dynamic graph computational models that provide frameworks for these algorithms.

Due to the evolving nature of temporal networks, model evaluation is much more challenging

than for static graphs. In order to evaluate models on a static graph, static ground truth labeling

is required, which itself often requires tedious human e�ort. In a dynamic graph, depending on

time granularity, the same human data curation may be required in each time step. In our best

e�ort to provide quantitative evaluation for dynamic graph algorithms, we collected two Twitter

data sets with daily ground truth information related to Open Tennis Tournaments from 2017.

We introduce these data sets in Section 2.2.

2.1 Edge streams

The usual approach to analyze temporal networks is to create a series of snapshots, and track

dynamics for various parameters in these static graphs [79, 127, 138]. For example, one can

collect all retweets on Twitter with corresponding hashtags every day to track the popularity of

a political party during the election period and then analyze daily changes in retweet patterns

to estimate online and o�ine popularity of this party [6, 50].

Unfortunately, for high temporal granularity networks, the snapshot-based approach is not always

13

feasible due to several problems. First, if we collect data for the range of hours or days to process

as a graph snapshot, we impose an additional delay on the model prediction. On the other hand,

running complex graph algorithms for large networks sometimes cannot be executed quickly

enough to keep the model predictions up to date. Thus, high temporal granularity networks are

usually considered in the edge or graph stream model [90], where edges must be processed once

they arrive in the stream.

Edge streaming for graphs forms a subclass of the data stream computational model [9,100]. In

this model, data arrives continuously in a potentially in�nite stream that has to be processed by

a resource-constrained system.

The fact that only a small portion of the data can be kept available for immediate analysis [63]

has both algorithmic and statistical consequences for machine learning. Suboptimal decisions

on earlier parts of the data may be di�cult to unwind, and if needed, require low memory

sampling and summarization procedures. Many of the usual data processing operations would

need random access to the data [9]. For example, only a subset of SQL queries can be served

from the data stream. As surveyed in [100], data stream algorithms can tackle this constraint by

a variety of strategies, including adaptive sampling in sliding windows, selecting representative

distinct elements, and summarizing data in low-memory data structures, also known as sketches

or synopses.

For temporal graphs, there are two data streaming models, the adjacency stream model where

the graph is presented as a sequence of edges in temporal order and there is no bound on the

degree of a vertex, and the incidence stream model where graphs are of bounded degree and all

edges incident to a vertex are presented successively [15]. In this work, we propose three online

updateable graph algorithms over the adjacency stream model that we describe in Chapters 3

and 4.

The need for machine learning over edge streams is motivated by a rapidly growing number of

industrial applications of graph algorithms [109, 153, 154, 163] and online machine learning [21,

42, 164,166]. However, very few graph learning algorithms are capable of immediately updating

their models from edge streams. Similarly, in the literature, we rarely �nd real graph streaming

methods where node labels are highly dynamic: even link prediction tasks are evaluated in

batches for sets of edges that appear over a longer period in time.

14

2.2 Twitter Tennis data sets

In our best e�ort to provide quantitative evaluation for online updateable graph algorithms on

edge streams, we collected two Twitter data sets with daily ground truth information. Our

data collections, RG17 and UO17, are related to Roland-Garros 2017, the French Open Tennis

Tournament, and for US Open 2017, the United States Open Tennis Championship. The events

took place between May 22 and June 11 and August 22 and September 10, respectively.

The two tournaments have similar structure. First, there is a quali�cation phase that only lasts

for a few days. It is followed by one or two days without any tennis games. Finally, the main

tournament spans across multiple weeks. It is important to note that some of the most successful

professional players usually do not play during the quali�cations. Thus, the �rst part of these

sport events does not receive as much social attention as the main tournament phase.

2.2.1 Data collection

We gathered data with the Twitter Search API by using the following two separate sets of

keywords:

{@rolandgarros, #RolandGarros2017,

#rolandgarros2017, #RolandGarros, #rolandgarros,

#FrenchOpen, #frenchopen, #RG17, #rg17}

{#usopen, #Usopen, #UsOpen, #USOPEN,

#usopen17, #UsOpen17, #Usopen2017, @usopen,

#WTA, #wta, #ATP, #atp, @WTA, @ATPWorldTour,

#Tennis, #tennis, #tenis, #Tenis}

The RG17 data covers the events of the championship starting May 24 with 444, 328 tweets

and 336, 234 time-stamped mentions. The UO17 data consists of 636, 810 tweets and 482, 061

mentions. Note that we imposed no language restrictions on the text of the tweets during the

data collection process.

For the two data sets, we extracted the underlying mention networks where the nodes are Twitter

15

05
-2

4
05

-2
5

05
-2

6
05

-2
7

05
-2

8
05

-2
9

05
-3

0
05

-3
1

06
-0

1
06

-0
2

06
-0

3
06

-0
4

06
-0

5
06

-0
6

06
-0

7
06

-0
8

06
-0

9
06

-1
0

06
-1

1

10000

20000

30000

40000

Number of edges (mentions)
Number of nodes (accounts)

Fig. 2.1: Number of nodes and edges in the UO17 (left) and RG17 (right) mention graphs.

accounts and the directed edges are @-mentions between them. Both networks are temporal as

we assign the timestamp of the containing tweet for each mention link.

As a �rst investigation, we show the number of edges and nodes for each day in Fig. 2.1. For

both data sets, the network dynamics are in strong correlation with the event timeline. During

the quali�ers, the number of interactions (mentions) is low. Then user activity increases as the

main tournament starts from Aug 28 or May 28, respectively. For UO17, the two bursts on

September 7 and 9 are related to Women's Singles semi-�nal and �nal. A similar behavior can

be observed for RG17 due to Men's Singles �nals on June 7, 9, and 11.

Our data sets are special in a way that in addition to the dynamic graph structure, they include

ground truth information with daily granularity for the nodes of the mention network. To obtain

the ground truth, �rst we downloaded the o�cial championship schedule. The daily timetables

in HTML format contain the following information for each tennis game:

� Full names of the participating players (two for singles and four for doubles games)

� Approximate time of the game during the day (e.g.: after 11:00, not before 15:00, etc.)

� Category and round identi�er of the game (e.g. Women's Singles�Round 1, Men's Singles�

Final)

� Court name, where the game took place (e.g. Grandstand, Arthur Ashe Stadium, etc.)

� Information about whether the game was canceled, resumed from a previous day, or the

�nal result if completed.

One of the most time-consuming part of the data curation process was to assign Twitter accounts

16

to tennis players. We used player-account pairs to de�ne a relevance score over the nodes of the

mention network based on the o�cial event schedule.

The total number of professional participants is 798 for US Open and 698 for Roland-Garros.

Since Twitter does not belong to mainstream social media platforms in several countries, for

many players, we have not found any Twitter accounts.

We assigned players to accounts by the Twitter Search API's people endpoint; however, the API

was sometimes unable to identify the accounts of the players. In these cases, we applied the

following semi-automatic procedure:

� For most social network platforms, it is a popular naming convention to choose a similar

account name to the full name of the account owner. Thus, using edit distance for each

active player, we automatically selected accounts where the account name or the displayed

name is very similar to the full name. During the assignment procedure, we prioritized

match in the account name attribute as sometimes users tend to post short messages or

special characters in their displayed name that could easily mislead edit distance.

� In order to match accounts and player names, we �rst listed the accounts that have mini-

mum edit distance from a given player's name. We removed whitespaces and transformed

all characters to lower case. Since name matching can lead to false player-account pairs,

we manually searched the lists of di�erent edit distance values to �nd valid player account

matches. We �rst considered screen names, and in case there was no match, we continued

with the displayed name of Twitter accounts.

� Note that the same player often has multiple Twitter accounts, especially the popular play-

ers, who usually have o�cial sites and distinct accounts for fans with di�erent nationalities.

In this case, we assigned multiple accounts for the same tennis player.

� As the last step, we excluded invalid assignments.

Using the above semi-automatic procedure, we managed to �nd Twitter accounts for 58.4% of

the US Open players, as seen in Fig. 2.2. We achieved better player coverage of 64.2% for

Roland-Garros.

17

0 25 50 75 100 125 150 175 200
Number of tennis players

2017-05-24
2017-05-25
2017-05-26
2017-05-28
2017-05-29
2017-05-30
2017-05-31
2017-06-01
2017-06-02
2017-06-03
2017-06-04
2017-06-05
2017-06-06
2017-06-07
2017-06-08
2017-06-09
2017-06-10
2017-06-11

Total number of players
Number of players with
 assigned Twitter account

Fig. 2.2: The number of players active on a given day and the number of them with identi�ed

Twitter accounts. Left: UO17; Right: RG17. Days with no tennis game between the quali�ers

and the championship (Aug 26-27 and May 27, respectively) are not shown.

2.2.2 Dynamic node relevance label

By relying on the o�cial event schedule and the tennis player to Twitter account assignments,

we compiled a binary node relevance label with daily granularity 2.1 for the nodes of the RG17

and UO17 mention networks.

Based on the approximate time of the games, we consider a Twitter account active for a given

day if he or she participated in a completed game, a canceled game, or a resumed game on the

same day, as all of these events are expected to cause a social media burst.

We de�ne relevance as follows. Each node n is a Twitter account in the mention network, which

we de�ne relevant if it corresponds to a tennis player that participated in the tournaments (e.g.

completed, canceled, resumed game) of the current day:

rel(n) :=

1, n plays on the current day

0, otherwise.
(2.1)

Our choice of temporal relevance poses challenging task for the dynamic network algorithms, since

we assign zero relevance score for various globally popular accounts in the data. For example,

accounts related to sport news agencies, commercial products and celebrities other than the

players who play in the tournaments are considered irrelevant in terms of the evaluation. We

highlight that our temporal relevance label is solely based on an external source, the o�cial event

schedule. The fact that it was not constructed from the network structure makes it ideal for the

evaluation of online graph algorithms.

18

In Chapter 3, we use our relevance de�nition to quantitatively analyze the performance of online

and static centrality measures over the UO17 and RG17 Twitter collections. For each centrality

measure, we compute the list of the nodes with the highest centrality in each hour. For evaluation,

we use NDCG [4] with temporal relevance de�ned by (2.1). First, for a list of length K that

contains the top nodes sorted by their centrality metric, we compute the weighted sum of node

relevances:

DCG@K =

K∑
i=1

rel(ni)
log2(i+ 1)

, (2.2)

where ni is the node at position i in the list. Finally, NDCG is the normalized version of DCG:

NDCG@K =
DCG@K
IDCG@K

, (2.3)

where IDCG is the �ideal� DCG we get by ordering the nodes according to their true relevance.

By a di�erent use of the daily tennis tournament schedule, we will investigate the temporal

behavior of online and static node embedding algorithms in Chapter 4.

19

20

Chapter 3

Temporal walk based centrality metric

for graph streams

There is a wide range of commercial and research applications devoted to identifying important,

popular, and in�uential users on social media platforms [43]. Since popularity and importance

are social phenomena and judged in a social context, a way to quantify them is through a

complex combination of social and behavioral factors. These often include graph characteristics

like degree, PageRank, and other centrality metrics [14, 36, 114, 155] measured over the social

network. The de�nitions of centrality can vary greatly and can incorporate both global and

local factors of a user's location within the social network [24]. The high variability of centrality

scores re�ects the nature of popularity observed in real-world [97] and online social networks [10].

Several models have been suggested to explain the emergence of high variability, habitually

involving some variation of the preferential attachment mechanism, also extended to the dynamic

setting [65].

Three axioms of centrality are de�ned in [24]. There is a single measure, harmonic centrality,

that satis�es all three of them. Since the computation of harmonic centrality for a given node u

involves all the distances from the node u in question, the measure is computationally challenging

even in a static graph.

In this chapter, we present temporal Katz centrality, an online updateable graph centrality

metric for tracking and measuring user importance over time.

21

3.1 Our results

Our proposed metric, temporal Katz centrality, is based on the concept of time-respecting walks

containing a sequence of adjacent edges with timestamps ordered in time. As seen in Fig. 3.1,

for node u, temporal Katz centrality aggregates each temporal walk ending before time t at u.

b

a

c

c

b

d

c

e

t1 t2

t3

e

u

t1 < t 2 < t3 < t

t2 t3

t3

t4
t5

t5

t 4 < t5 < t

Fig. 3.1: Temporal walks ending at node u before time t.

In our �rst main result, we extend the de�nition of the Katz index [72] to the edge stream graph

computational model where the edges of the network arrive continuously in time. Although

many studies tried to identify the best estimates for the importance of a social media user, to

the best of our knowledge, only two previous studies [52,131] propose data stream updateable

centrality measures.

Another key property of our new centrality measure is the incorporation of arbitrary time decay

functions that can be adapted to the task in question. The algorithm of [131], which we analyze

in Section 3.2.2, cannot incorporate the actual edge arrival times in its calculations. We believe

our method is superior in using the exact time of interaction between two social media users,

resulting in better performance in our prediction task.

We also address the di�culty of the timely evaluation of fast changes in social media. In order

to evaluate a static centrality measure, static ground truth labeling is required, which itself often

requires tedious human e�ort. In [24], for example, the Text Retrieval Conference (TREC) topics

are used [39]. In a dynamic graph, depending on time granularity, the same human data curation

may be required in each time step.

For example, in the study most similar to ours [131], only small temporal social network snapshots

are collected, and evaluation is mostly based on convergence to static centrality measures.

22

We conduct supervised evaluation for dynamic centrality in a data-intensive setting over the

RG17 and UO17 Twitter data sets introduced in Section 2.2. The underlying dynamic mention

graphs have several hundred thousand edges. Both data collections are related to Open Tennis

Tournaments from 2017. We used the o�cial event schedule of these sport events to compile

ground truth labels for network nodes with daily granularity. Our measurements on these data

sets show that our temporal Katz centrality measure outperforms static baselines as well as the

temporal PageRank of [131].

Our further results include two convergence theorems that mathematically justify the connection

between our dynamic version and the original static Katz index [72].

Finally, we perform extensive parameter analysis to measure score variability and concept drift

adaptation in the sequence of graph snapshots.

3.2 Review of related work

For temporal networks, a few generalizations of static centrality measures to dynamic settings

have been suggested recently [5, 56, 76, 143, 145]. In these works, tracking centrality of a single

node and determining its variability play a major role [145], as it has been observed in the

literature that centrality of nodes can change drastically from one time period to another [25].

In this work, we address a practically important variant of dynamic centrality: Our goal is

to compute online updateable measures that can be computed from a data stream of time-

stamped edges. However, the above results [5, 56, 76, 143, 145] cannot be used for computing

and updating centrality online. The following results devise methods that are variants of our

snapshot baselines: In [145], the spectrum of a set of discrete graph snapshots is analyzed

in time; however, the spectrum cannot be dynamically updated with �ne time granularity, as

required by our application. Similarly, in [56], sequences of snapshots are considered. Finally,

in [5, 76, 143], degree, closeness, and betweenness are considered in dynamic graphs, but these

measures, with the exception of the degree, cannot be e�ciently updated online. To the best of

our knowledge, the only previous such algorithms are temporal PageRank [131] and degree [76]�

other measures are ine�cient to update online. For example, in [52], a heuristic version of

betweenness centrality was proposed for �ego-graphs�, which have paths of length two only. They

applied their algorithms for small graphs of less than 250 nodes only. Based on the comparative

evaluation of centrality measures in [24], we chose not to include experiments with betweenness

23

centrality in our experiments.

The starting point of our temporal Katz centrality measure is PageRank [113], which along with

the Katz index satis�es the last two axioms de�ned in [24]. PageRank is considered a success

story in link analysis and listed as one of the ten most in�uential data mining algorithms [158].

The importance of PageRank in our work has multiple reasons. On the one hand, it is widely used

and has favorable properties by the axioms of [24]. On the other hand, temporal PageRank [131]

is a modi�cation of PageRank, which to the best of our knowledge, is the only temporal ranking

metric proposed in the literature prior to our work.

PageRank, Katz index, and temporal PageRank are all based on counting paths in the underlying

networks. Next, we review the general properties of the path counting centrality metrics and

temporal PageRank [131]. Then in Section 3.3, we describe our temporal Katz centrality measure.

3.2.1 Path counting centrality metrics

As perhaps the �rst centrality metric based on path counting, Katz introduced his index [72] as

the summation of all paths coming into a node, but with an exponentially decaying weight based

on the length of the path:

~Katz = 1 ·
∞∑
l=0

βlAl, (3.1)

where ~Katz is the Katz index vector, A is the directed adjacency matrix, and β < 1 is a constant.

Hence the Katz index of a node is the weighted sum of the number of paths of di�erent lengths

l terminating in u, where the weight is βl:

~Katz(u) :=
∑
v

∞∑
l=0

βl|{paths of length l from v to u}|, (3.2)

The Katz index is �nite only if β < 1/|λ1|, where λ1 is the eigenvalue of A with largest absolute

value [72]. Since 1/|λ1| is often very small, around 0.05 in our graphs, the relative weight of a

length two path stays very small compared to a single edge. In order to be able to use larger

values of β, we introduce the truncated Katz index as

~Katz
[k]

= 1 ·
k∑
l=0

βlAl. (3.3)

Note that ~Katz
[∞]

= ~Katz.

By the basic de�nition, PageRank is normally considered to be the static distribution of a random

walk with damping [113]. In order to compare PageRank and the Katz index, and to motivate

24

online update rules, we use the result of [49], who show�and use as an e�cient algorithm�that

PageRank is equal to the path counting formula

~PageRank = 1 · c
N
·
∞∑
l=0

(1− c)lM l, (3.4)

where c is the damping constant and M is the random walk transition matrix. In other words,

M is the outdegree normalized adjacency matrix: M = (D−1A)T where D is a diagonal matrix

with the outdegrees in the diagonal.

3.2.2 Temporal PageRank

To our knowledge, temporal PageRank [131] is the only published work about temporal general-

izations of PageRank that is online updateable. Other results focus on coarse, static snapshots

such as Bonacich's centrality [80], or use temporal information to calculate edges of a static

graph [67, 87]. Finally, another line of research considers updating PageRank in dynamic or on-

line scenarios [11,12,77,111,133]; however, in these results PageRank is considered a stationary

distribution over the current, static graph.

In [131], temporal PageRank, a dynamic variant of PageRank, is de�ned as follows. In a dynamic

graph, edges are time-stamped and can appear multiple times. The main idea is to aggregate

time respecting temporal walks

z = (u0, u1, t1), (u1, u2, t2), · · · , (uj−1, uj , tj); ti−1 ≤ ti. (3.5)

ending in a certain node, as illustrated in Fig. 3.1, to compute its temporal centrality. In such

a walk, they model an information �ow from the start node u0 to the destination uj by passing

along edges that arrive subsequently in time.

For each edge (ui−1, ui, ti) in walk z, they assign the transition weight as βs, where β < 1 is a

decay constant and s is the number of edges (ui−1, y, t
′) that appear after the previous edge but

not later than the present edge in the walk, that is, ti−1 < t′ < ti. They incorporate this weight

assignment in formula (3.4); for full details, see [131].

Intuitively, their notion of edge transition weight decays exponentially with the number of possi-

ble continuations of the temporal walk at node ui−1. The more edges appear before (ui−1, ui, ti),

in their model it is exponentially less likely that the information is sent along the given edge�and

not another edge that appears earlier.

25

u1 u2u0
. uj-1 uj

t2t1 tj
u3

t3

ᶨ (t2-t1) ᶨ (t3-t2) ᶨ (t4-t3) ᶨ (tj-tj-1) ᶨ (t-tj)
.

Fig. 3.2: Edge weights along a temporal walk at time t.

The main problem with the above path counting algorithm is that it overvalues nodes with low

activity. Consider a node that communicates to ten contacts in a few minutes. The tenth contact

will only receive a propagated score proportional to β−10. By contrast, if another node sends

only one message per day, the neighbor receives the full score even though the information may

already be highly outdated.

One key motivation of the above de�nition for temporal PageRank is that it possesses a com-

putationally low cost update algorithm. While it is tempting to modify the weight formula to

incorporate the actual time elapsed, the stream-based computation of such a modi�ed temporal

PageRank becomes unclear.

3.3 Temporal Katz centrality

We de�ne our temporal Katz centrality measure over the stream of edges arriving in time from

a dynamic network. Our goal is to specify a metric that is based on the weighted sum of time

respecting walks, updateable by the edge stream, and that can incorporate the actual elapsed

time in the weights of the walks.

To motivate our new method, we reconsider the temporal PageRank [131] edge transition weight

rule: Weight βs is assigned to an edge uv in a path where s is the number of edges that appear

after the previous edge entering u but not later than the appearance of edge uv. The de�nition

involves time decay in an indirect way through a combination with the activity of the nodes.

As an advantage, the de�nition guarantees that the weight will incur the degree normalization

required in the PageRank equation (3.4), and hence temporal PageRank will converge to static

PageRank if edges are played several times in random order. As a disadvantage, the notion of

time is di�cult to directly capture in the temporal PageRank algorithm. The more time elapses

before the next edge appears, the more other edges have the chance to appear in between.

However, this notion also depends on the activity of the node in question, and longer delays are

penalized less at inactive nodes compared to active nodes.

26

We de�ne temporal Katz centrality by introducing a natural, purely time-dependent edge

transition weight ϕ(τ), which is an arbitrary function of the time elapsed since the previous edge

in a path. Intuitively, we de�ne a time dependent decay for each edge, as shown in Fig. 3.2. We

will use the edge decay values to compute an aggregated freshness of the information �ow along

a given path, which we will in turn aggregate for the �nal nodes of the paths.

1. temporal Katz centrality is the weighted sum of all time respecting walks that end in node

u,

ru(t) :=
∑
v

∑
temporal paths z

from v to u

Φ(z, t) (3.6)

where Φ(z, t) is the weight of walk z at time t. Truncated temporal Katz centrality is

de�ned similar to equation (3.3) by restricting to walks of length at most k.

2. For a temporal walk as in equation (3.5) where edges appeared at (t1, t2, ..., tj), we de�ne

weight Φ(z, t) as

Φ(z, t) :=

j∏
i=1

ϕ(ti+1 − ti). (3.7)

where ϕ is a time-aware weighting function, and for i = j we let tj+1 := t.

3. Hence Φ(z, t) is the product of individual edge transition weights ϕ(ti+1 − ti) as seen in

Fig. 3.2. The last term of the product ϕ(t− tj) captures the delay between present time t

and the appearance of the last edge in the path.

By combining Equations (3.6)�(3.7) temporal Katz centrality can be considered a variant of the

Katz index Equation (3.2), in which time respecting paths are weighted by Φ(z, t):

ru(t) :=
∑
v

∑
temporal paths z

from v to u

j∏
i=1

ϕ(ti+1 − ti). (3.8)

By using di�erent edge weight functions, we cover two important special cases for temporal Katz

centrality:

• If ϕ(τ) := β is constant, we obtain a variant of the Katz equation (3.2) with summation for

temporal paths instead of all paths irrespective of time.

• In another special case, ϕ(τ) := β · exp(−cτ). Since ϕ is an exponential function, ϕ(a) ·ϕ(b) =

ϕ(a+ b). Hence the path weight in (3.7) becomes

Φ(z, t) = β exp(−c[t− tj])...β exp(−c[t2 − t1]) = β|z| exp(−c[t− t1]), (3.9)

27

that is, it involves a Katz-style decay proportional to the length of the path, combined with

an exponential decay depending on the time elapsed since the �rst interaction t1 over the path

occurred. This weight is capable of capturing the temporal decay of information spreading

and propagation.

3.3.1 Update formula

In this section, we show how we can maintain temporal Katz centrality ru for each node u, which

is the sum of temporal paths z as in equation (3.5) with weight Φ(z, t) as in (3.7). We base our

analysis below on the fact that the sum of all temporal paths to u can be derived by using the

number of temporal paths ending at the in-edges of u. As seen in Fig. 3.3, if edge vu appears at

time tvu, the future centrality of node u at time t increases as

1. a new time respecting walk appears that starts from v and has weight ϕ(t− tvu),

2. for each time respecting walk that ended in v at tvu, a new walk with the new edge vu

appears. The total weight of paths that ended in v is rv(tvu), hence the weight of the new

walks is rv(tvu) · ϕ(t− tvu).

Adding up the weight of the two types of new walks, we get

ru(t) =
∑

vu∈E(t)

(1 + rv(tvu))ϕ(t− tvu), (3.10)

where E(t) is the multi-set of edges appearing no later than t. Based on the above recur-

sive formula, if edge vu appears at time tvu, it increases the future centrality of node u by

(1 + rv(tvu))ϕ(t− tvu). The increase of the centrality of u can be computed by maintaining the

values tvu and wvu := 1 + rv(tvu). The algorithm for updating temporal Katz centrality is hence

the following:

• For each node u, we initialize temporal Katz centrality ru as constant 0. For each edge vu, we

maintain the edge weight wvu and the time of appearance tvu, initially all set to 0 and −∞,

respectively. We let E(t) denote the multi-set of edges that appeared before time t.

• Next, we consume the stream of edges vu and we update r and w as follows. First we calculate

the current value of rv as

rv :=
∑

zv∈E(t)

wzv · ϕ(t− tzv). (3.11)

Here E(t) is a multi-set, and each past occurrence of edge zv is counted separately, with

di�erent tzv and hence di�erent decay. Note that when edge vu appears, t = tvu.

28

v u

v u

ᷢ (t - tvu)

(2)

(1)

Fig. 3.3: At time t when edge vu becomes active, (1) a new walk appears starting from v, and

(2) each time respecting walk that ended in v continues to u.

• Then we add a new edge vu to the multi-set of edges with wvu := rv + 1 to propagate the

centrality score along edge vu, and set tvu := t.

• The above algorithm can also be applied to update truncated temporal Katz centrality by

the following modi�cation: We maintain an array w[l]
vu for l = 1, . . . , k for each edge in the

multi-set E(t), and set

w[1]
vu := 1

w[l]
vu := 1 +

∑
zv∈E(t)

w[l−1]
zv · ϕ(t− tzv) for 1 < l ≤ k. (3.12)

r[l]
v :=

∑
zv∈E(t)

w[l]
zv · ϕ(t− tzv) (3.13)

Time ordering is consistent with information propagation: For a path of three nodes u, v, and

z, we can propagate a certain share of the ru score along edge vz only by �rst propagating along

uv; hence uv must appear before vz.

To relate temporal Katz centrality to (online) PageRank, notice the di�erence of the Katz and

PageRank path counting formulas (3.1) and (3.4). In Katz, the exponential decay is applied to

powers of the binary valued adjacency matrix A, while in PageRank, to the degree normalized

random walk matrix M .

Observe the lazy behavior of the algorithm: Ranks are updated only for the tail v of each new

edge vu. We assign based on the centrality of v rv + 1, as the weight wvu. If we query the rank

of u, we propagate rv along edges vu; however, we add a time decay to account for the freshness

of the edges vu: More recent edges propagate scores with higher intensity.

3.3.2 Time complexity

The time complexity of maintaining rv by formula (3.11) is linear in the degree of v. We

can further improve the online update complexity to constant time per update if ϕ satis�es

29

ϕ(a+ b) = ϕ(a) · ϕ(b). In this case, it is easy to see that at query time t, we can recompute rv

by the actual time t in formula (3.11) as

rv := rv · ϕ(t− tv) (3.14)

where tv is the last time node v was updated.

We can combine formulas (3.11), (3.10) and (3.14) to update ru for each new edge (vu) by

rv := rv · ϕ(t− tv);

ru := ru · ϕ(t− tu) + (rv + 1) · β;

tu := t, tv := t (3.15)

Querying the centrality score of a single node can be served in constant time by formula (3.14).

Hence computing a centrality top list can be done in time linear in the number of vertices. For

the special case when ϕ(t) = 1, the scores change only when formula 3.15 is applied, hence the

scores can be stored, for example, in a heap to quickly access the maximum score. In other

cases, we can deploy heuristics such as [146] to quickly �nd u that maximizes the product (3.14);

however, such an optimization is out of scope in this work.

Overall, for the decay functions ϕ used in our experiments, the time complexity of our method

is identical to that of time decayed degree. In the special case of ϕ = 1, our time complexity

is equal to that of static degree, while for other decay functions, we can bring the running time

very close to static degree by applying heuristics to �nd the maximum of a product [146].

We experimentally compared the running time of our method with static indegree, static Page-

Rank, temporal PageRank, and harmonic centrality in Fig. 3.4. We generated random Barabási�

Albert graphs [16] by the barabasi_albert_graph method of the networkx Python package1

and constructed temporal graphs by using a 10% sample of the edges in random order. We split

the temporal graph into ten equal sized slices and computed all node centrality values at the end

of each of the ten slices. The size of the graphs are found in Table 3.1.

As seen in Fig. 3.4, except for harmonic centrality, all algorithms scale linear with the number

of edges. For our temporal Katz centrality algorithm, more than half of the running time is

1https://networkx.github.io/documentation/networkx-1.9.1/reference/generated/networkx.generators.

random_graphs.barabasi_albert_graph.html. We set m = 3 for the number of edges from a new node to existing

nodes.

30

https://networkx.github.io/documentation/networkx-1.9.1/reference/generated/networkx.generators.random_graphs.barabasi_albert_graph.html
https://networkx.github.io/documentation/networkx-1.9.1/reference/generated/networkx.generators.random_graphs.barabasi_albert_graph.html

Table 3.1: The size of the random Barabási�Albert graphs generated for the scalability experi-

ments.

Nodes Edges Edge sample size

10 000 59 982 5 998

50 000 299 982 29 998

100 000 599 982 59 998

1 000 000 5 999 982 599 998

2 000 000 11 999 982 1 199 998

3 000 000 17 999 982 1 799 998

4 000 000 23 999 982 2 399 998

5 000 000 29 999 982 2 999 998

consumed by multiplying the centrality values by the time decay as in Equation (3.14) at the

time of reading the observations. Hence we also report the running times of our method without

time decay synchronization at the end of the time frames. Overall, we observed that the running

time of these methods show implementational rather than algorithmic di�erences.

3.3.3 Normalization for numeric stability

Next we describe how to normalize the temporal Katz centrality scores throughout the computa-

tions for numeric stability. The main reason is that in our experiments, the values often resulted

in numeric over�ow for the best performing values of β. Since for a ranking method, the actual

values of the score are indi�erent, and only the rank order matters, we can apply any method to

normalize temporal Katz centrality. The main challenge is that the normalization method must

also be online updateable.

First, we discuss the numerical importance of normalizing temporal Katz centrality. Katz in-

dex (3.1) converges only if β is less than the inverse of the largest eigenvalue of A [72]. Typical

maximal values of β for real graphs are in the range of 0.01�0.05, which gives small weight for

longer paths. By contrast, temporal Katz centrality performed best in our experiments for de-

tecting important nodes of the network for much larger values β. For the high values of β, the

centrality scores quickly grow to in�nity, as it happened in our experiments. For this reason,

next we propose a method for normalizing temporal Katz centrality.

31

0 1000000 2000000 3000000
Edge sample size

0

500

1000

1500

2000

Ru
nn

in
g

tim
e

(s
ec

on
ds

)
Temporal Katz (sync)
Temporal Katz
PageRank (sync)
Temporal PageRank
Indegree (sync)
Harmonic Centrality (sync)

Fig. 3.4: The running time of temporal PageRank, static PageRank, static indegree, harmonic

centrality, and temporal Katz centrality with and without synchronizing with time decay at the

end of each time frame, as in Equation (3.14), measured over random Barabási�Albert graphs

with sizes as in Table 3.1. All static centrality measures are considered to be synchronized.

To normalize the centrality scores, it is su�cient to maintain the sum of the raw scores. Given

the sum, we can always divide raw scores by the sum to obtain the normalized values. In order

to ensure that the raw values and the sum do not grow unbounded, we have to periodically apply

the normalization to all values. Unfortunately, synchronized normalization of all values is not

possible in the data streaming model. Instead, we apply lazy normalization and maintain the

time-stamped history of the multipliers. Whenever we touch a centrality value, we �rst check its

time stamp to see if pending normalization steps need to be taken �rst before using the value.

Finally, we describe the algorithm to maintain the sum of the centrality scores. Instead of the

lazy algorithm in Section 3.3.1, which updates centrality rv only when a new edge vu appears

that will later propagate the value of rv to node u, we theoretically maintain the actual score at

every time instance. First, for every clock tick of time τ , we multiply each rv, and hence also the

32

sum, by e−τ as in equation (3.14). Second, we consider an event when edge vu appears. At this

time, the value of rv is computed by the update equation (3.11). This new edge propagates the

score rv to u and thus increases ru by rv. Hence for all new edges, the increase of the sum at the

time edge vu appears is rv measured at that time. To maintain the total sum of the centrality

scores, all is required is to add up rv in equation (3.14) whenever it is applied by the update

algorithm, and multiply by e−∆t at every clock tick of time ∆t.

3.3.4 Convergence properties

Let us assume that we sample a sequence of T edges from a graph with edge set of size E. We

intend to compute the expected value of temporal Katz centrality over the sampled edge stream,

under the assumption that the activation of the links of the underlying graph is random. We give

estimates on the number of times a given path is expected to appear in time respective order,

which yields in convergence theorems for temporal Katz centrality to an expression similar to

the Katz index. Note that we assume that sampling is done in a uniform way over time, hence

in what follows, time t corresponds to the number of sampled edges in the process.

Theorem 3.3.1. Let us compute (truncated or normal) temporal Katz centrality with Φ(z, t) =

β|z| (no decay). If we sample a sequence of T edges from an edge set of size E, the expected

value of temporal Katz centrality is

~TemporalKatz = 1 ·
k∑
l=0

βlAl
(
T

l

)
· E−l ' 1 ·

k∑
l=0

βlAl(T/E)l/l!. (3.16)

Proof. The expected number of times the edges of a given path of length l appear in a given

order, in an edge sample of size T can be computed as

sT,l =

(
T

l

)
· E−l, (3.17)

since a given edge has a probability of 1/E to appear at a given position in the sequence of T

edges. To complete the proof, observe that by equation (3.8), temporal Katz centrality is

~TemporalKatz = 1 ·
k∑
l=0

βlAl · sT,l = 1 ·
k∑
l=0

βlAl
(
T

l

)
· E−l (3.18)

Theorem 3.3.2. Let us sample a sequence of T edges from an edge set of size E. Let us compute

(truncated or normal) temporal Katz centrality with exponential weighting, ϕ(τ) := β exp(−cτ).

33

0 TT-j
j

𝛷 (z,T) = 𝛽le-cj

Fig. 3.5: Explanation of Theorem 3.3.2. Each occurrence of a given path of length l that starts

at time T − j has the same weight βl exp−cj.

Then as T 7→ ∞, the limit of the expected value of temporal Katz centrality is

~TemporalKatz = 1 ·
k∑
l=0

Al
(
β

E

)l (1

ec − 1

)l
. (3.19)

In particular, if c = c′/E with c′ � E, then the expected value of temporal Katz centrality is

approximately

~TemporalKatz = 1 ·
k∑
l=0

Al
(
β

c′

)l
. (3.20)

Proof. We intend to compute

~TemporalKatz = lim
T→∞

1 ·
k∑
l=0

AlsT,l = 1 ·
k∑
l=0

Al lim
T→∞

sT,l (3.21)

where sT,l denotes the expected total weight of a given path of length l in an edge sample of size

T .

Let us consider a given path of length l starting at time t1 = T − j as seen in Fig. 3.5. Each

possible occurrence of the path starting at the same time t1 = T − j has the same weight

Φ(z, T) = βle−cj (see (3.7) and (3.9)). Since we �x the �rst edge of these occurrences, by

equation (3.17), the expected number of the occurrences is 1
El

(
j−1
l−1

)
. As a result, the expected

total weight of a given path of length l is

sT,l = βl
1

El

T∑
j=l

(
j − 1

l − 1

)
e−cj . (3.22)

34

Since
∞∑
n=m

(
n

m

)
xn = xm/(1− x)m+1,

lim
T→∞

sT,l = lim
T→∞

(
β

E

)l T∑
j=l

(
j − 1

l − 1

)
e−cj

=

(
β

E

)l
e−c

∞∑
j=l

(
j − 1

l − 1

)
e−c(j−1) (3.23)

=

(
β

E

)l e−cl

(1− e−c)l
=

(
β

E

)l 1

(ec − 1)l
. (3.24)

Hence

~TemporalKatz = 1 ·
k∑
l=0

Al lim
T→∞

sT,l = 1 ·
k∑
l=0

Al
(
β

E

)l (1

ec − 1

)l
. (3.25)

If c = c′/E with c′ � E, then c′/E << 1 and ec
′/E ≈ 1 + c′/E; hence

~TemporalKatz = 1 ·
k∑
l=0

Al
(
β

E

)l (1

1 + c′/E − 1

)l
= 1 ·

k∑
l=0

Al
(
β

c′

)l
. (3.26)

There is always a certain amount of �uctuation in temporal centrality as the e�ect of the most

recently selected edges. We can compute the expected increase for the weight of paths that end

with the most recently selected edge.

For the case with no decay, the additional count is the number of times the length l − 1 pre�x

appears, which is sT−1,l−1. The increase is approximately a multiplicative (1+l/E) factor, which

may be large for a large l; however, the weight of long paths is diminishing exponentially as βl.

For the case with decay, the increase is given by equation (3.24) applied with l − 1 instead

of l, which approximately gives an expected multiplicative increase (1 + 1/(Ee−c)), which is

approximately 1 + c′ for the special case of Theorem 3.3.2.

3.4 Unsupervised evaluation

In addition to the tennis tournament data sets with ground truth relevance labels as de�ned in

Section 2.2, we used the data sets of [131] for unsupervised analysis (see Table 3.2). These small

temporal networks (Students, Facebook, Enron, Tumblr) have no more than 10,000 edges2, as

seen in Table 3.2.
2GitHub repository of the temporal PageRank research:

https://github.com/polinapolina/temporal-pagerank

35

https://github.com/polinapolina/temporal-pagerank

Table 3.2: Summary of the data sets used.

Edges Nodes Days

Students 10,000 1,654 121

Facebook 10,000 4,752 104

Enron 6,251 1,944 892

Tumblr 7,645 1,757 89

UO17 482,061 106,920 21

RG17 336,234 78,095 19

3.4.1 Stability vs. changeability

We assess the amount of variability of temporal Katz centrality in time, depending on the

parameters β and the time decay exponent to exhibit the speed of focus shift in daily interactions.

We use the weight function ϕ(τ) = β ·2−cτ ; c can be considered as the half-life of the information

sent over an edge. We update temporal Katz centrality without truncation after each edge

arrival, and compute the top 100 nodes with highest centrality scores for each snapshot. We

generate the lists at the beginning of each day for the small data sets of [131], and each hour

for our Twitter collections RG17 and UO17. Spearman correlation is calculated between lists of

adjacent snapshots, for di�erent values of c and β, as shown in Fig. 3.6.

Our measurements show that the similarity between adjacent lists depends on two di�erent

factors. We can turn temporal Katz centrality more static by using longer half-life in the decay.

If the half-life is short, we even get negative correlations as the number of nodes present in both

lists decreases. Another option is to use larger β. By increasing β, the contribution of long

walks will be more relevant, which cannot be dominated by recently added edges as easily as

for a small β. The two approaches can also be used in combination. We observed the highest

similarity using β = 1.0 with large half-life values.

3.4.2 Adaptation to concept drift

Rozenshtein et al. [131] showed that temporal PageRank can adapt to the changes in the edge

sampling distribution over semi-temporal networks. We conducted similar measurement for

temporal Katz centrality on the same data sets: We created concept drift by changing the

sampling distribution that generates the temporal graphs and measuring how quickly the di�erent

36

0 2 4 6 8 10 12
time_window

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ea

rm
an

@
10

0

RG17

0.1
0.5
1.0

0 2 4 6 8 10 12
time_window

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ea

rm
an

@
10

0

UO17

0.1
0.5
1.0

10 20 30 40 50 60 70
time_window

0.5

0.4

0.3

0.2

0.1

0.0

0.1

Sp
ea

rm
an

@
10

0

Facebook

0.1
0.5
1.0

10 20 30 40 50 60 70
time_window

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Sp

ea
rm

an
@

10
0

Students

0.1
0.5
1.0

10 20 30 40 50 60 70
time_window

0.2

0.1

0.0

0.1

0.2

0.3

Sp
ea

rm
an

@
10

0

Tumblr

0.1
0.5
1.0

Fig. 3.6: Average Spearman correlation between temporal Katz centrality scores of adjacent

snapshots. Daily snapshots are used for Facebook, Students and Tumblr data sets, and hourly

snapshots are used for RG17 and UO17 Twitter collections. The correlation is presented for β

values 0.1,0.5,1.0 and several time decay intensity in the horizontal axis.

37

methods get closer to the static centrality measure of the new distribution.

We created concept drift by changing the sampling distribution that generates the edge stream.

We measured how quickly di�erent temporal centrality measures converge to the static centrality

measure of the new distribution.

In our experiment for concept drift adaptation, we randomly selected 500 nodes as a base graph

and formed three overlapping subsamples of 400 nodes each. Similar to the approach in [131],

we formed a temporal edge stream of three segments corresponding to the three subsamples, in

each segment selecting 10,000 random edges from the corresponding subsample. We compute

temporal PageRank and temporal Katz centrality without truncation by assuming that a single

new edge in the stream appears in each time unit. In other words, we measure the elapsed time

τ by the number of edges in the stream.

We computed weighted Kendall tau [150] rank distance between temporal Katz centrality and

static Katz index restricted to the nodes of the actual subsample. This results in concept drift

with three di�erent versions of the static centrality score corresponding to the three time periods.

By using weighted Kendall tau for measuring concept drift adaptation, we put more emphasis

on nodes with high centrality compared to (unweighted) Kendall tau. For the same reason, we

use the asymmetric version as in [150] by using the weight of 1/rank for the static Katz index

and zero for the online methods. By this choice, Kendall tau measures the distance from the

Katz index acting as ground truth.

In Fig. 3.7, we evaluated our model for various values of the exponential decay against the Katz

index with β = 0.01. The results show that in case of weak decay c = 1
|E| , temporal Katz

centrality becomes similar to static Katz index as the graphs evolve, which is in accordance to

Theorem 3.3.2 stating that temporal Katz centrality converges to an expression similar to the

static Katz index. On the contrary, strong decay shifts the focus of temporal centrality towards

the recently sampled edges, thus correlation decrease for c = 10
|E| and c = 100

|E| . Also note the noise

in temporal Katz centrality rank distance curves due to the e�ect of the most recently selected

edges, as described in Section 3.3.4.

To summarize our experiments in Fig. 3.7, we considered the behavior of temporal Katz central-

ity with di�erent parameters as well as temporal PageRank after the two changes in sampling

distribution marked by vertical bars in the Figure. We observed that temporal PageRank forgets

the old distribution very slow, while temporal Katz centrality very quickly becomes similar to

38

5000 10000 15000 20000 25000 30000
Number of temporal edges

0.6

0.7

0.8

0.9
W

ei
gh

te
d

Ke
nd

al
l-t

au

Students

Temporal PageRank
Temporal Katz: c=1/E
Temporal Katz: c=10/E
Temporal Katz: c=100/E

5000 10000 15000 20000 25000 30000
Number of temporal edges

0.5

0.6

0.7

0.8

W
ei

gh
te

d
Ke

nd
al

l-t
au

Enron

Temporal PageRank
Temporal Katz: c=1/E
Temporal Katz: c=10/E
Temporal Katz: c=100/E

5000 10000 15000 20000 25000 30000
Number of temporal edges

0.4

0.5

0.6

0.7

0.8

W
ei

gh
te

d
Ke

nd
al

l-t
au

Facebook

Temporal PageRank
Temporal Katz: c=1/E
Temporal Katz: c=10/E
Temporal Katz: c=100/E

5000 10000 15000 20000 25000 30000
Number of temporal edges

0.6

0.7

0.8

0.9

W
ei

gh
te

d
Ke

nd
al

l-t
au

Tumblr

Temporal PageRank
Temporal Katz: c=1/E
Temporal Katz: c=10/E
Temporal Katz: c=100/E

Fig. 3.7: Weighted Kendall tau rank distance of static Katz index and online methods by sampling

to simulate concept drift over Students, Enron, Facebook and Tumblr data. Static Katz index

has β = 0.01. The Weighted Kendall tau curves for temporal Katz centrality with c = 1
|E| are

green, with c = 10
|E| are red, with c = 100

|E| are purple, and for temporal PageRank are dashed

blue. Noise in temporal Katz centrality is due to the e�ect of the most recently selected edges.

The two vertical bars mark the time of the concept drift, when a new sampling distribution is

used to generate the temporal edges.
39

the new static distribution. The best parameter for temporal Katz centrality is a weak decay

c = 1
|E| , which is still su�cient to forget the old distribution but gives less �uctuation compared

to the very highly adaptive, stronger decay versions with larger values of c.

3.5 Supervised evaluation

In this section, we quantitatively analyze the relevance of temporal centrality measures over the

UO17 and RG17 Twitter collections. We compare the relevance of temporal Katz centrality to

temporal PageRank and other online and static baseline methods described in Section 3.5.1.

To evaluate online metrics, we perform continuous update as the new edges arrive, by considering

our mention graph data as a time-ordered edge stream. For the static metrics, we consider

di�erent graph snapshots. For each centrality measure, we compute the list of the nodes with

the highest centrality in each hour. We use NDCG [4] for evaluation, de�ned as follows. For a

list of length K that contains the top nodes sorted by their centrality metric, we compute the

weighted sum of node relevances:

DCG@K =
K∑
i=1

rel(ni)
log2(i+ 1)

, (3.27)

where ni is the node at position i in the list and rel(ni) is its relevance: An account ni is relevant

(see Section 2.2.2 for the justi�cation) if it corresponds to a tennis player that participated in

the tournaments of the current day:

rel(ni) :=

1, ni plays on the current day

0, otherwise.
(3.28)

Finally, NDCG is the normalized version of DCG:

NDCG@K =
DCG@K
IDCG@K

, (3.29)

where IDCG is the �ideal� DCG we get by ordering the nodes according to their true relevance.

3.5.1 Baseline metrics

We compare temporal Katz centrality to online (or time-aware) and static (or batch) metrics.

Online metrics are updated after the arrival of each edge. By contrast, static metrics are only

updated once in each hour. At hour t a static metric is computed on the graph constructed from

40

edges arriving in time window [t−T, t] from the edge stream. For each baseline, we experimentally

select the best value of T .

We consider four static centrality measures as baseline:

� PageRank [113]: We set α = 0.85, and 50 iterations.

� indegree: We calculate the indegree of each node in time window [t−T, t] by counting each

edge once, that is, without multiplicity.

� negative β-measure [24]: The normalized version of indegree, for node u∑
z∈Nin(u)

1

outdegree(z)
(3.30)

where Nin(u) denotes the in-neighbors of u.

� harmonic centrality [24]: For node u ∑
z 6=u

1

d(z, u)
. (3.31)

Furthermore, we compare temporal Katz centrality with two online metrics, temporal Page-

Rank [131] and decayed indegree.

� temporal PageRank: We set α = 0.85 and β ∈ {0.001, 0.01, 0.05, 0.1, 0.5, 0.9} for transition

weight.

� decayed indegree: Using the notations of Section 3.3.1, the decayed indegree of node u at

time t is ∑
zu∈E(t)

ϕ(t− tzu) (3.32)

where ϕ is the time decay function that we set ϕ(t− tzu) := exp(−c(t− tzu)) similarly to

temporal Katz centrality.

3.5.2 Results

As the �nal and main analysis of the relevance of centrality measures, we compute hourly lists

of top centrality nodes and calculate the NDCG@50 against the ground truth. We show two

di�erent ways to aggregate hourly NDCG@50 values:

1. For each hour of the day between 1:00 and 24:00, we show averages over the days of the

tournament.

41

2. As a single global value, we average NDCG@50 for all days with all hours between 10:00

and 20:00.

The hour of the day has a key e�ect on performance. In the early hours, activity is low, and

hence information is scarce to identify the players of the coming day. By contrast, in the late

hours after the games are over, we expect that all models easily detect the players of the day

based on the tweets of the results. The e�ect of the hour of the day can be seen in Fig. 3.8,

where we plot the average daily performance for temporal Katz centrality measured over the

UO17 data. This observation, along with the fact that daily tennis games start around 10:00 is

the motivation to average NDCG@50 scores only between 10:00 and 20:00.

First, we analyze our baseline models. Each static metric is computed at hour t over the graph

de�ned by edges arriving in time frame [t − T, t]. Hence the key parameter of these methods

is the length of the time window T . Similarly, online decayed indegree depends on the half-

life parameter τ := ln 2/c. Fig. 3.9 shows the overall performance of the static baselines as

the function of time frame T , and the quality of decayed indegree as the function of half-life

τ . For both data sets, PageRank and harmonic centrality outperform degree-related methods.

Furthermore, these path-based methods prefer larger time frames, while degree-based models

perform best at smaller values of T .

Next we turn to analyzing temporal Katz centrality with exponential decay. The key parameters

of our method are the parameters of the exponential decay β and τ := ln 2/c, and truncation k.

We then parameterize exponential decay with half-life τ := ln 2/c instead of c.

First, we examine the e�ect of k and half-life τ by setting β = 1. Fig. 3.10 shows the perfor-

0 5 10 15 20
time (hour of the day)

0.25

0.30

0.35

0.40

0.45

N
D

C
G

@
50

Temporal Katz

Fig. 3.8: Average daily NDCG@50 performance of temporal Katz centrality on the UO17 data.

42

5 10 15 20
time window T (hours)

0.24

0.26

0.28

0.30

0.32

0.34

N
D

C
G

@
50

indegree
decayed indegree
PageRank
Harmonic Centrality
negative beta measure

5 10 15 20
time window T (hours)

0.24

0.26

0.28

0.30

0.32

0.34

0.36

N
D

C
G

@
50

indegree
decayed indegree
PageRank
Harmonic Centrality
negative beta measure

Fig. 3.9: NDCG@50 performance of the baseline methods as the function of time window T . For

online decayed indegree results are shown as the function of half-life τ . Left: UO17, Right:

RG17.

0 10 20 30 40
half-life (hours)

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

N
D

C
G

@
50

k = 1
k = 2
k = 4
k = 6
k = 8
k =

0 10 20 30 40
half-life (hours)

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

N
D

C
G

@
50

k = 1
k = 2
k = 4
k = 6
k = 8
k =

Fig. 3.10: NDCG@50 performance of temporal Katz centrality as the function of half-life pa-

rameter τ . Di�erent curves correspond to di�erent values k of truncation. We set β = 1. Left:

UO17, Right: RG17.

0.0 0.2 0.4 0.6 0.8 1.0

0.32

0.34

0.36

0.38

0.40

N
D

C
G

@
50

k = 2
k = 4
k = 6
k = 8
k =

0.0 0.2 0.4 0.6 0.8 1.0

0.335

0.340

0.345

0.350

0.355

0.360

0.365

0.370

N
D

C
G

@
50

k = 2
k = 4
k = 6
k = 8
k =

Fig. 3.11: NDCG@50 performance of temporal Katz centrality as the function of parameter β.

Di�erent curves correspond to di�erent values k of truncation. We set τ = 6h for the UO17

data, and τ = 3h for the RG17 data. Left: UO17, Right: RG17.

43

0 5 10 15 20
time (hour of the day)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

N
D

C
G

@
50

Temporal Katz
Harmonic Centrality
PageRank
temporal PageRank
indegree
decayed indegree

0 5 10 15 20
time (hour of the day)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

N
D

C
G

@
50

Temporal Katz
Harmonic Centrality
PageRank
temporal PageRank
indegree
decayed indegree

Fig. 3.12: Overall best daily NDCG@50 performance of temporal Katz centrality and the base-

lines. Left: UO17, Right: RG17.

Table 3.3: Best average NDCG@50 performance of each centrality metric.

NDCG@50 UO17 RG17

indegree 0.321 0.342

decayed indegree 0.321 0.346

negative beta 0.319 0.333

PageRank 0.325 0.349

temporal PageRank 0.187 0.195

harmonic centrality 0.353 0.359

temporal Katz centrality 0.370 0.368

mance of temporal Katz centrality at various parameter settings for UO17 the RG17. We plot

NDCG@50 against parameter τ . Di�erent curves correspond to di�erent k parameters. The

e�ect of k is signi�cant: Models with k > 1 strongly outperform models with k = 1, a very

simple version of temporal Katz centrality similar to online degree. The best performance can

be achieved on both data sets by setting k = 2 and τ ≈ 3h.

In Fig. 3.11 we analyze the importance of parameter β. For models with larger k (e.g. k = 8), the

importance of β is to decrease the e�ect of paths that are too long, with optimal value around

β ≈ 0.1 − 0.2. For methods with lower k (e.g. k = 2), β is nearly meaningless, and the use of

small β in combination with strong exponential decay results in performance deterioration.

The �nal conclusion of our experiments is drawn in Fig. 3.12 where we compare the hourly

performance of each method at their best parameter settings. For temporal Katz centrality we

set β = 1, τ = 3h, k = 2. In the case of both data sets, temporal Katz centrality can keep up with

44

the performance of harmonic centrality, the strongest baseline model. The quality of temporal

PageRank is signi�cantly lower than the quality of other methods. We summarize the best

NDCG@50 scores for temporal Katz centrality and the baselines in Table 3.3. Temporal Katz

centrality generally performs better than other baselines. Note that only harmonic centrality, a

measure that is static and not online updateable, delivers performance comparable to temporal

Katz centrality.

We illustrate various centrality measures by showing the 20 accounts with highest score for the

Roland-Garros semi�nals. On June 9, more than 70 players participated in several categories

(Men's singles, Girl's and Boy's singles, etc.). In Table 3.4, we show top accounts at 12:00 by

temporal Katz centrality with k =∞ and τ = 3h, and in Table 3.5 for harmonic centrality and

decayed indegree, the latter also at 12:00.

We show the accounts of tennis players playing participating in the June 9 semi�nals in orange

and of those who did not play that day in yellow. For example, women semi-�nalists of the

previous day, Simona Halep, Timea Bacsinszky, Caroline Garcia and Gabriela Dabrowski are

yellow. All methods listed 4�6 daily players among the most central 20 accounts. All methods

assigned high centrality to Men semi-�nalists Rafael Nadal, Andy Murray, Stanislas Wawrinka

and Dominic Thiem. Furthermore, temporal Katz centrality with β = 1.0 and harmonic cen-

trality could recover two additional young daily players, Whitney Osuigwe and Nicola Kuhn.

Retired tennis legends Ana Ivanovic and Gustavo Kuerten are not relevant in our experiment as

they did not participate in this event.

Notice that decayed indegree and temporal Katz centrality with β = 0.2 rank sports media

accounts (Tennis Channel, WTA, ATP World Tour, Eurosport) higher compared to harmonic

centrality and temporal Katz centrality with β = 1.0. We did not attempt to curate the rele-

vance to media sources, as the number of such Twitter accounts is abundant. Finally, sponsors

`yonex.com' and `NikeCourt', as well as the o�cial Twitter account of the event `Roland-Garros'

also rank high. Most of these accounts are active every day, with little observable change in time,

which justi�es why we do not consider them relevant for the temporal evaluation.

3.6 Conclusion

In this Chapter, we introduced an online updateable, dynamic graph centrality measure based

on the Katz index. Our proposed metric can incorporate arbitrary time decay functions to

45

Table 3.4: Temporal Katz centrality toplist for RG17 semi �nal day (June 9) at 12:00 with

β = 1.0 (left) and β = 0.2 (right). Relevant daily players are highlighted orange. Accounts of

players who did not play on this day are highlighted yellow.

β = 1.0 β = 0.2

Rank Account Label Account Label

1 Simona Halep 0 Roland-Garros 0

2 Stanislas Wawrinka 1 Stanislas Wawrinka 1

3 Andy Murray 1 Andy Murray 1

4 Rafa Nadal 1 Simona Halep 0

5 Roland-Garros 0 Rafa Nadal 1

6 Ana Ivanovic 0 Dominic Thiem 1

7 Timea Bacsinszky 0 Timea Bacsinszky 0

8 Karolina Pliskova 0 Rohan Bopanna 0

9 Rohan Bopanna 0 Ana Ivanovic 0

10 Dominic Thiem 1 WTA 0

11 Gaby Dabrowski 0 Gaby Dabrowski 0

12 Gustavo Kuerten 0 Tennis Channel 0

13 Nicola Kuhn 1 Rafa Nadal Academy 0

14 yonex.com 0 Karolina Pliskova 0

15 Whitney Osuigwe 1 yonex.com 0

16 Caroline Garcia 0 Gusti Fernandez 0

17 NikeCourt 0 rolandgarrosFR 0

18 Novak Djokovic 0 Eurosport.es 0

19 WTA 0 ATP World Tour 0

20 ATP World Tour 0 Caroline Garcia 0

46

Table 3.5: Harmonic centrality (left) and decayed indegree (right) top list for RG17 semi �nal

day (June 9) at 12:00. Relevant daily players are highlighted orange. Accounts of players who

did not play on this day are highlighted yellow.

Harmonic centrality decayed indegree

Rank Account Label Account Label

1 Roland-Garros 0 Roland-Garros 0

2 Rafa Nadal 1 Andy Murray 1

3 Andy Murray 1 Stanislas Wawrinka 1

4 Stanislas Wawrinka 1 Rafa Nadal 1

5 Simona Halep 0 Dominic Thiem 1

6 Dominic Thiem 1 Timea Bacsinszky 0

7 Rohan Bopanna 0 Simona Halep 0

8 Timea Bacsinszky 0 Rohan Bopanna 0

9 Ana Ivanovic 0 Ana Ivanovic 0

10 Tennis Channel 0 Tennis Channel 0

11 yonex.com 0 Gaby Dabrowski 0

12 WTA 0 Gusti Fernandez 0

13 Caroline Garcia 0 Rafa Nadal Academy 0

14 Rafa Nadal Academy 0 WTA 0

15 Gaby Dabrowski 0 yonex.com 0

16 ATP World Tour 0 Eurosport.es 0

17 Whitney osuigwe 1 Caroline Garcia 0

18 Nicola Kuhn 1 Eurosport UK 0

19 NikeCourt 0 Stéphanie Loire 0

20 Anabel Medina 0 Emilie Lopez 0

47

emphasize the time-related relevance of the edges based on their time of creation. Our algorithm

models information spreading over the stream of edges created subsequently in time.

We presented multiple unsupervised experiments to show that our method can adapt to changes

in the distribution of the edge stream. Furthermore, with time decay parameter c and β we can

properly control the e�ect of recently added edges. We also proved that our metric converges to

the Katz index in case of static edge distribution.

In order to assess the quality of our centrality measure, we compiled a supervised evaluation for

the mention graphs of Twitter tennis tournament collections along with temporal importance

ground truth information. To the best of our knowledge, these are the �rst Twitter collections

enhanced with dynamic node importance labels. We made our data set, as well as our codes

publicly available3.

In our �nal experiment, we compared our temporal Katz centrality metric with static graph-based

measures as well as with other dynamically updateable algorithms. We found that temporal Katz

centrality can identify accurately and quickly the emerging, new important nodes and that it

worked particularly well in the US Open 2017 (UO17) collection.

3GitHub repository of our research: https://github.com/ferencberes/online-centrality

48

https://github.com/ferencberes/online-centrality

Chapter 4

Node embeddings in dynamic graphs

Embedding methods on graphs encode the nodes of the network to vectors in a low-dimensional

vector space. In general, representations in the embedded space should re�ect the structure of

the original graph. Perhaps the most well-known method is Laplacian eigenmaps [17]. Another

class of models is based on the adjacency matrix of the graph; one popular example is graph fac-

torization [2]. Recently, random walk-based approaches have been proposed, like Node2Vec [57],

LINE [141], and DeepWalk [118]. These methods sample node pairs that co-occur in random

walks, and then optimize for their similarity in the embedded space. Walk sampling is motivated

by the skip-gram model from natural language processing [94]. Furthermore, the aforementioned

techniques can be uni�ed under a matrix factorization framework [124].

Any embedding method can be applied in dynamic graphs by considering graph snapshots in

time. However, such solutions do not only react slowly, but also build new representations for

every snapshot, hence they require an entire model retraining for downstream machine learning

tasks [60].

In this chapter, we propose two online updateable node embedding models that very e�ciently

update the existing embedding by only considering a small neighborhood in the graph.

4.1 Our results

In order to generate time-aware node embeddings, we have to solve the challenge of maintaining

node embeddings for tracking and measuring node properties and similarities as the edges arrive.

Most graph algorithms are di�cult to update online. For example, to compute random walk-

49

w

edge stream

time

v

node representations

update

qw

qv

temporal walk

time

u

u

v

Fig. 4.1: Concept of StreamWalk. When uv edge arrives in the stream, vertices from the temporal

neighborhood of u are sampled via temporal random walks. The method optimizes for the

similarity of v and the sampled node w.

based embeddings [57], we have to be able to maintain not just the embedding but also the set

of walks whenever a new edge appears in the stream.

Our �rst algorithm is StreamWalk, an online updateable node embedding model based on the con-

cept of time respecting paths introduced in Chapter 3. Compared to earlier results, StreamWalk

is capable of updating the set of walks for every single new edge in the stream and not just larger

batches of insertions and deletions.

The key ingredients of StreamWalk are online gradient descent optimization [68] and time re-

specting temporal walks [131]. As illustrated in Fig. 4.1, after the arrival of edge uv in the

stream, our algorithm picks node samples for node v from its temporal neighborhood, using

temporal walks ending in the latest edge uv. Given the sample w, the optimization step moves

the embedding vectors of w and v closer to each other. Our algorithm performs online machine

learning [21] by continuously updating a model as new links arrive from the edge stream.

Our second algorithm directly learns the neighborhood similarity of node pairs in the graph

stream, which we call second order similarity. By MinHash �ngerprinting [48], we e�ciently

approximate the neighborhood Jaccard similarity of any two nodes at a given time. Then we

optimize the embedding to make pairs similar, proportional to the overlap of their neighborhood.

50

To fully utilize the power of graph embedding, our main focus for evaluation is similarity search,

in which we assess the information encoded in the embedding about node pairs rather than just a

global property required for predicting links. For similarity search, the prime source of di�culty

lies in ground truth compilation as it often requires tedious human e�ort, especially if the ground

truth target also changes dynamically.

As our �nal result, we design a quantitative experiment for accessing the quality of temporal node

embeddings based on the Twitter tennis tournament mention graphs, introduced in Section 2.2,

which include temporally changing node labels. In a supervised experiment, we show that online

updateable embeddings capture node similarities better than static embeddings.

4.2 Review of related work

Representation learning methods on graphs encode the nodes of the network to points in a

low-dimensional vector space. In general, representations in the embedded space should re�ect

the structure of the original graph. The research area of node embeddings has been recently

catalyzed by the Word2Vec algorithm [93], developed for natural language processing. Several

node embedding methods have been proposed recently [57,118,124,141] and applied successfully

for multi-label classi�cation and link prediction in a variety of real-world networks from diverse

domains.

We brie�y review the methodology of the above approaches by following [61]. Static embedding

methods learn an embedding vector qu for each node u in the graph. Usually, the objective is

to learn vectors that are similar for neighboring nodes, but a few approaches were also proposed

to capture structural node similarities [3]. Let s(u) denote the neighborhood of u; then our goal

is to satisfy qv ≈ qu for v ∈ s(u). Shallow embedding approaches for static graphs di�er in the

objective function they use to ensure the similarity of the embeddings, and in the de�nition of

the network neighborhood s(u).

Graph factorization [2], GraRep [34], and HOPE [112] optimize for the squared error (SE) over

node pairs in the neighborhood:

∑
u

∑
v∈s(u)

[quqv − sim(u, v)]2 ; (4.1)

where sim(u, v) is the similarity of two nodes measured from the graph structure and quqv is the

dot product of the two vectors. The de�nition of the neighborhood is based on the adjacency

51

matrix. Graph factorization calculates with adjacent neighbors, while GraRep uses higher powers

of the adjacency matrix, for example, two-hop neighbors.

As a di�erent method, random walk-based approaches [57, 118] sample vertices from the neigh-

borhood of a node. Sampling is done by initiating random walks from node u. Instead of SE,

these approaches optimize for cross-entropy loss:

∑
u

∑
v∈s∗(u)

− log

[
exp(quqv)∑
w exp(quqw)

]
; (4.2)

where s∗(u) is a random sample from the neighborhood of u.

Many of the above mentioned algorithms use the Word2Vec model as an underlying abstraction

by training the model, using sampled walks analogously to sentences, and using the learned

embeddings as node embeddings. We follow this approach, and also investigate the use of

either the input (W1) or the output embedding (W2) of the model [123] as the vector space

representation of the graph.

The above models learn static embeddings on graph snapshots; however, they mention extensions

towards online learning from graph streams. In DeepWalk [118], the possibility of an online

incremental update is proposed but not analyzed. An incremental update for LINE with a

batch of edge insertions and deletions is described in [160], but no attempt is made to analyze

the online, single edge insertion behavior. Closest to our work is the continuous-time dynamic

network embedding result [108], which does not learn online but computes an embedding for a

single point in time. Similarly, the HTNE algorithm [167] produces a temporal node embedding,

but training is done in batch instead of executing online updates. A promising direction for

computing the embedding dynamically involves recurrent neural networks, for example, Long

Short-Term Memory networks [152]. A few results on applying recurrent networks for graphs

have appeared after our work [13,82,116,162].

4.3 Dynamic Vector Space Embedding Methods in Edge Streams

We describe two node embedding approaches that are applicable in edge streams. The input of

both algorithms consists of an edge stream (u, v, t) ordered by time t in which each edge can

occur multiple times. As required by the data stream algorithmic model, we process the edges

in the order of arrival without storing the entire input.

52

uj-1

t2t1 tjt3

𝜸 (t2-t1) 𝜸 (t3-t2) 𝜸 (t4-t3) 𝜸 (tj-tj-1) 𝜸 (t-tj)

u0 u1 u2 u3 uj

Fig. 4.2: Temporal walk. Adjacent edges in the graph are in time respecting order. The proba-

bility of the walk is based on the delays between the appearances of the adjacent edges.

Our goal is to dynamically learn node representations by re�ecting the current node similarity

structure of the evolving graph as we dynamically change the location of the nodes in the vector

space. To this end, we give two embedding methods in the next two subsections. Two nodes

are required to be mapped close in the vector space whenever they lie on short paths formed by

recent edges in the �rst model, and whenever the set of their recent neighbors is similar in the

second model.

4.3.1 Similarity based on reachability through short temporal walks

In our �rst algorithm, our goal is to enforce that the embedding of node v be similar to the

embedding of nodes with the ability to reach v across edges that appeared recently, as shown in

Fig. 4.1. In other words, the embedding of a node should be similar to the embedding of nodes

in its temporal neighborhood. We de�ne time respecting temporal walks [131] in order to sample

for each node u at any time t nodes from its temporal neighborhood. As seen in Fig. 4.2, a

temporal walk consists of adjacent edges ordered in time:

z = (u0, u1, t1), (u1, u2, t2), · · · , (uj−1, uj , tj); ti−1 ≤ ti. (4.3)

For example, there are three temporal walks leading to node v in Fig. 4.4: e1, e3, and e2, e3.

Since edges can appear multiple times, we consider the edge set as a multiset and distinguish

between the walk (e2, e3), which is a temporal walk, from (e2, e1), which is not, since e1 comes

earlier than e2.

To de�ne the similarity, we want to give more weight to shorter walks and more weight to fresh

edges. Towards this end, for a temporal walk where edges appeared at (t1, t2, . . . , tj), we de�ne

the probability of the walk at time t as

p(z, t) := β|z| ·
j∏
i=1

γ(ti+1 − ti); (4.4)

53

Table 4.1: Notations used in the StreamWalk algorithm.

z a temporal walk

uv the new directed edge that is being processed in the edge stream

t(xy) time of arrival of a multi-edge instance

tu last time an edge arrived leading to u

β decay exponent for the length of the walk

γ time-aware edge weighting function

p(z, t) weight of walk z at time t

p(w, t) sum of weight of walks ending in node w at time t

p(xy) sum of weight of walks ending with edge xy at time t(xy)

where β ≤ 1 is an exponential decay on the length of the walk, t = tj+1, and γ(τ) is a time-aware

weighting function that is based on the delay τ between adjacent edges. The concept of (4.4) is

that a walk is more likely if edges along the walk appeared close to each other in time. We use

exponential time weight γ(τ) := exp(−cτ). Since γ(a) · γ(b) = γ(a + b), the probability of the

path in (4.4) becomes

p(z, t) = β|z| exp(−c(t− tj)) · . . . · exp(−c(t2 − t1)) = β|z| exp(−c(t− t1)). (4.5)

The notation is summarized in Table 4.1.

Temporal walk sampling from edge stream

Given a node v, a naive idea would be to compute the walk weight
∑
{p(z, t) : z is a temporal

walk from w to v} for all other nodes w and set the embedding of w close to that of v proportional

to the walk weight. The problem with this approach is that it requires a time consuming walk

enumeration procedure at each time instance, and has no ability to update the similarity measure

by focusing only on the new edges as they arrive.

Given the new edge uv that arrives at time t, we would like to only consider walks from any w

that reach v by the new edge uv. Towards this end, we propose a sampling update procedure

for temporal walks as follows. We select a start node w of a random temporal walk z ending

in u with probability proportional to p(z, t) in (4.5); see Fig. 4.3. We generate the walks by

taking steps backwards from u. To make sure the walks are temporal, we always use edges

that appeared before the previous one. Among the possible edges entering the current node, we

54

w

t1

temporal walk z

time

t2

t3

t4

t5

t1 < t2< t3 < t4 < t5 < t

qw

qv

vu
t

Fig. 4.3: StreamWalk: learning embeddings based on random walks to the past in temporal

networks.

u vw
e2: t2

e1: t1

e3: t3

time p(e1, t) p(e2, t) p(e3, t) p((e2, e3), t) p(v, t)

t = t1 β n/a n/a n/a p(e1, t1) = β

t = t2 βγ(t2 − t1) β n/a n/a p(e1, t2) = βγ(t2 − t1)

t = t3 βγ(t3 − t1) βγ(t3 − t2) β β2γ(t3 − t2) p(e3, t3) + p((e2, e3), t3) + p(e1, t3) =

β(1 + p(e2, t3)) + γ(t3 − t2)p(v, t2)

Fig. 4.4: Computation of p(v, t) for the arrival times t1 < t2 < t3 of the three edges e1, e2, and

e3. The bottom right cell illustrates the update formula (4.7).

select proportional to the time-aware weighting function γ. For example, in Fig. 4.3, we select

t5 backwards from u, and then t3 backwards from the next node. Finally, we also compute a

stopping probability corresponding to the length decay β so that we select no new edge from w

in the example; the actual formula (4.10) is explained later.

The actual implementation is somewhat tricky in that we have to handle multi-sets of edges. A

way to illustrate the implementation is to consider an edge uv that appears before another wu

and then reappears, see Fig. 4.4. The second instance can form a temporal walk w, u, v, while

the same walk is not temporal with the �rst instance of uv. However, the second instance of uv

has a higher edge weight γ, hence we have to store the weight of the �rst instance as well to be

able to correctly compute the weight of all temporal walks that reach node v.

55

The implementation of the StreamWalk algorithm

In Algorithm 1, we describe StreamWalk, our implementation of temporal walk sampling. Recall

that the notation is summarized in Table 4.1. For every edge uv in the multi-set of edges arriving

in the stream, we maintain the total weight of all walks ending at v at time t(uv):

p(v, t(uv)) =
∑
z

p(z, t(uv)); (4.6)

where we sum over all temporal walks z ending in v using edges arriving no later than t(uv).

The actual computation in procedure UpdateWalks accumulates the weight of the walks seen

in Fig. 4.5. There is a new single edge temporal walk uv with weight β. Furthermore, we can

continue each temporal walk z that ended in u before t(uv) with uv. The total weight of these

walks is p(u, tu) ·β · exp(−c(t(uv)− tu)) where tu is the most recent timestamp for which p(u, tu)

is known. In other words, tu denotes the last time an edge entering u arrived in the edge stream.

The exponential term accounts for the time decay of temporal walk weights since the arrival

of this last edge entering u. Finally, we add all the walks that terminated at v before, with

exponential time decay. The �nal formula becomes

p(v, t(uv))← β · (1 + p(u, tu) · exp(−c(t(uv)− tu))) + p(v, tv) · exp(−c(t(uv)− tv)); (4.7)

where tv is the most recent timestamp for which p(v, tv) is known. The update rule is illustrated

in the last step in Fig. 4.4 and in Fig. 4.5.

For each edge uv in the stream, we �nally update the embedding of v by sampling a �xed

number of temporal walks ending in u; we do this by calling procedure SampleWalks k times

as described at the end of this section. Given the start node w of a walk in the sample, we

optimize for the similarity of the embedding pair (qv, qw) with stochastic gradient descent. For

loss function, we either set MSE or cross-entropy as in equations (4.1) and (4.2). In the case of

MSE, for each w we apply online negative sampling [115] by selecting pairs vw′ proportional to

the popularity of w′ in the edge stream up to the current timestamp. We refer to [69] for online

incremental updates for cross-entropy based loss.

Since we train by sampling k walks per edge, time complexity is a�ected by the cost of sampling

temporal walks. To reduce storage, we can work over a sliding window of the stream and

periodically remove the oldest edges; these edges will already have a very small γ value.

Finally, we describe the algorithm to sample temporal walks as implemented in Procedure Sam-

pleWalks of Algorithm 1. Our goal is to sample proportional to p(y, τ) at a given time τ . We

56

Algorithm 1 StreamWalk.
procedure UpdateWalks(u, v)

. Update the weight for all walks ending at v

tu, tv ← last timestamp such that p(u, tu) and p(v, tv) are known, respectively

p(v, now)← β · (1 + p(u, tu) · exp(−c(now− tu))) + p(v, tv) · exp(−c(now− tv))

t(uv)← now

procedure SampleWalks(y, τ) . Recursively sample a temporal walk ending at y

t← most recent timestamp with t ≤ τ such that p(y, t) is known

p(y, τ)← p(y, t) · exp(−c(τ − t))

With probability 1/(1 + p(y, τ)) do

return y

else

for all xy multi-edges with t(xy) < τ do

Select x with probability p(xy) · exp(−c(τ − t(xy)))/p(y, τ)

return SampleWalks(x, t(xy))

procedure StreamWalk(u, v)

. Update embedding for v

call UpdateWalks(u, v)

repeat k times

w ← SampleWalks(u, now)

Optimize the representations qw and qv by equation (4.1) or (4.2)

57

u v

u v

z1:

z2:

z3:

walks ending in u at tu

walks ending in v at time t(uv)

new walk

∑p(zi,tu)=p(u,tu) 𝛽+

𝛽exp(-c[t(uv)-tu])p(u,tu)+

 exp(-c[t(uv)-tv])p(v,tv)+

i

walks ending in v at tv

p(v,t(uv))

Fig. 4.5: Whenever a new edge uv appears, a new walk starts from u (red), and each temporal

walk (z1,z2,z3) that ended in u up to time tu continues via uv (blue). We get p(v, t(uv)) by

summing up the contribution of the previous two type of walks (red and blue) with the decayed

weight of walks that have already reached node v (purple) before time t(uv).

de�ne a random walk backwards from y. We select a backward edge with probability proportional

to the weight of walks ending with that edge, which we de�ne as

p(xy) =
∑
z

p(z, t(xy)); (4.8)

where z are temporal walks ending with the given instance of the edge xy that appeared at time

t(xy). Recall that the edges are taken from a multi-set. The value of p(xy) can be calculated

as follows. From the total temporal walk weight ending in y at time t(xy), we have to subtract

the total weight of all walks ending in y before t(xy); the di�erence contains the weight of only

those paths that use the edge instance xy of timestamp t(xy):

p(xy) = p(y, t(xy))− p(y, t̄) · exp(−c(t(xy)− t̄)); (4.9)

where t̄ < t(xy) is the timestamp of the last edge in the stream entering y before t(xy). The

exponential term corresponds to the time decay of the walk weight since time t̄.

We also de�ne the termination for the walk, which is based on the contribution of the single

node y as a zero-edge walk relative to all other walks that end at y. At any time of observation

τ , the weight of the zero-edge walk is 1, and the total weight of the remaining walks is p(y, t) for

the last recorded time t ≤ τ , decayed proportional to the elapsed time, τ − t. Hence with the

probability below, we take no further steps but stop the walk:

1/(1 + p(y, t) · exp(−c(τ − t))). (4.10)

58

The steps of Procedure SampleWalks are summarized as follows.

1. We start the random walk from y ← u and set τ = now.

2. With probability such as in equation (4.10), we stop the walk and return the current node

y.

3. Optionally, we can also terminate the walk if its length reaches a prede�ned limit.

4. Else, we select an edge xy with t(xy) < τ with probability proportional to the time-decayed

total weight of walks ending with xy, which is p(xy) · exp(−c(τ − t(xy))) by de�nition.

5. We repeat from step 2 by setting y ← x and τ ← t(xy).

As the �nal implementation details, we can sample by selecting a random value between zero

and p(y, τ) and binary search in the multi-set of xy edges ordered by t(xy). For a given edge xy,

we compute p(xy) by equation (4.9) and continue the binary search based on the time-decayed

value p(xy) · exp(−c(τ − t(xy))). Lastly, it can happen that sampling intends to select a very old

edge that was already deleted from the sliding window. This happens when binary search does

not terminate at the oldest t still kept in the records. In this case, we can repeat the sampling

with a new random value.

4.3.2 Online Learning of Second Order Node Similarity

Our next online algorithm optimizes the embedding to match the neighborhood similarity of the

nodes, which we call second order proximity by following [141]. Our goal is to optimize for (4.1)

online, by considering sim(u, x) as a time-aware Jaccard similarity of the neighborhood of u and

x, as illustrated in Fig. 4.6. We consider the neighbors y of u as a multi-set N(u, t) in which we

use the decayed weight of edge uy as the weight of y:

w(y) = exp(−c(t− t(uy))); (4.11)

where t(uy) is the time the corresponding instance of edge uy appeared in the stream. Whenever

we add a new edge to u, we discard elements y ∈ N(u, t) with probability 1 − w(y). This way

we emphasize the importance of new edges and also limit the size of N(u, t) by discarding old

edges with low weight that have little e�ect on similarity values.

In order to design a streaming algorithm to compute second order similarity, we face the same

problems as in the StreamWalk algorithm: we want to focus on the increase of similarity when we

59

u v

y x
N(v)N(u)

k
fin
ge
rp
rin
ts

u v

hi (u)

Fig. 4.6: Online learning of second order node similarity.

add a new edge uv, and we want to avoid the costly full computation of similarities of u with all

neighbors x of v. Note that the similarity of x and u depend on their neighborhood, which means

that all nodes of distance two from v should be enumerated for the full computation. In the

next subsection, we describe a randomized approximation method for neighborhood similarities

based on [48], which will be used in our �nal algorithm.

Approximation by �ngerprinting

Our algorithm relies on MinHash �ngerprinting [27] to approximate the Jaccard similarity. The

notations are summarized in Table 4.2. Let there be k independent random permutations over

the nodes πi for i = 1 . . . k. We de�ne the k �ngerprints of A as

hi(A) := argmin{πi(a) : a ∈ A}; hi(∅) = NaN; i = 1 . . . k; (4.12)

For short,

hi(u) := hi(N(u, t)). (4.13)

We maintain k �ngerprints de�ned in (4.12) for the neighborhood of each node where the weights

of the elements are de�ned by (4.11). We approximate the time-aware Jaccard similarity of any

node pair with the fraction of common �ngerprint values:

sim(u, v, t) ≈
k∑
i=1

I[hi(u) = hi(v)]/k. (4.14)

We illustrate the �ngerprinting idea in Fig. 4.7 for k = 2. The two �ngerprints of u, h1(u)

and h2(u), are de�ned based on two permutations π1 and π2 of the entire vertex set. The

permutations are �xed, but the �ngerprints change in time as new edges arrive and past edges

become too old and get removed from N(u, t).

60

Table 4.2: Notations used in the second order similarity algorithm.

uv the new directed edge that is being processed in the edge stream

t(xy) time of arrival of a multi-edge instance

πi a permutation of the entire vertex set, �xed in time

N(u, t) the pruned neighbors of u at time t

hi(u) = hi(N(u, t)) the i-th �ngerprint of u at time t

u

v

v3

v2

N(u,t)

v1

tt3

t2

t1

id 𝞹1 𝞹2 role

v 1 8 h1(x) and
h1(u) after t

v3 4 7 h1(u) before t

v2 7 3 h2(u) after t (*)

v1 9 2 h2(x) and
h2(u) before t

N(u,t3)

x

Fig. 4.7: Illustration of how the �ngerprints of node u change when adding the new edge uv.

Neighbors of u are ordered in time as t1 < t2 < t3 < t. Two �xed random permutations π1 and

π2 de�ne the �ngerprints h1(u) and h2(u). In π1 (red), v has minimum value, hence the previous

h1(u) will be reassigned to v. In π2 (purple), the minimum is the oldest node v1, which becomes

too old and gets removed from N(u, t). The correct value for h2(u) would be v2 (?). Instead we

heuristically set h2(u) = v after the removal of v1.

Next, we show how the similarity of u and a neighbor x of v can be approximated in the example

of Fig. 4.7. Assume that h1(x) = v and h2(x) = v1. By using formula (4.14), before edge uv

arrives, the similarity approximation is sim(u, x, t3) ≈ (0 + 1)/2 as h2(x) = h2(u) = v1 at time

t3. When edge uv arrives, the similarity will on one hand increase, since h1(u) gets assigned

with v. On the other hand, the similarity can decrease as edges become too old. For example, if

we drop edge uv1, equation h2(x) = h2(u) = v1 will no longer hold. However, since we want to

avoid the cost of updating hi(x) for all i and all neighbors x of v, we heuristically only consider

the increase of similarity, which can be caused by adding v as new �ngerprint of u.

As a �nal heuristic, in our implementation we always replace �ngerprints corresponding to pruned

neighbors by v, since obtaining the πi values of the entire neighborhood is computationally costly.

In the example of Fig. 4.7, we drop edge uv1 as t1 � t. The correct new value of h2(u) would

61

be the next oldest vertex v2, however this can only be calculated by enumerating all neighbors

of u. Instead, in our implementation we heuristically assign h2(u)← v.

Algorithm 2 Online learning second order similarity
procedure UpdateFingerprints(u, v)

for all i in 1 . . . k do

if hi(u) is too old or πi(v) < πi(hi(u)) then

hi(u)← v

procedure GetSimilarityDelta(u, v, x)

`← 0

for all i in 1 . . . k do

if hi(u) = hi(x) = v then

`← `+ 1

return `

procedure OnlineSecondOrderSim(u, v)

UpdateFingerprints(u, v)

for all in-neighbors x of v that are not too old do

`← GetSimilarityDelta(u, v, x)

Optimize the representations qu and qx repeated ` times, by using equation (4.1) or (4.2)

Repeat with v and u swapped and edge directions reversed

Algorithm for Online Learning Second Order Similarity

Our method is described in Algorithm 2 by using the notations in Table 4.2. Our goal is to

approximate the change of similarity between u and the in-neighbors x of v, and modify the

embedding vectors whenever certain x gets more similar to u after adding the new edge uv. Note

that x becomes more similar if the edge xv also appeared recently; in terms of �ngerprints, this

means that for some �ngerprint index i, both x and u have v as �ngerprint node. We perform

the steps below to update the �ngerprints of u and check for v as �ngerprint in the in-neighbors

x of v:

1. For node u, we maintain the present neighborhood N(u) by removing very old edges, and

recompute the k �ngerprints hi(u) for i = 1 . . . k by calling Procedure UpdateFinger-

62

prints. Fingerprint hi(u) can take the new value v for the new edge uv if it is too old

or if πi(v) becomes the new MinHash value for permutation i. In the former case, we can

either heuristically replace hi(u) with the new neighbor v or compute the true MinHash

value argmin{πi(y) : y ∈ N(u)}.

2. Finally, for each in-neighbor x ∈ N(v), we compute the number of �ngerprints ` that match

those of u and have value v in Procedure GetSimilarityDelta, and ` times optimize the

representations qu and qx by using equation (4.1) or (4.2).

Symmetrically, we also check for the similarity increase of v with the out-neighbors of u by

performing the same steps, replacing u and v on the reverse direction graph.

4.4 Similarity Search Experiments

In this section, we describe our evaluation, in which we assess how well the closeness of two

nodes in the embedding re�ect their similarity against an external ground truth. Towards this

end, we �rst describe a network enriched with a time dependent external similarity ground truth

information. Then, at a time instance, we compute the list of nodes closest to selected ones in

the embedding, and compare these lists against the similarity ground truth.

We analyze node embedding methods for similarity search over the Twitter tennis tournament

collections of Section 2.2. We use the mention graphs extracted from the last 15 and 14 days of

RG17 and UO17, respectively. For the quantitative analysis, we use the annotation of the nodes

for the accounts of the tennis players that participate in a game on a given day as described in

Section 2.2.2. In this sense, we expect that the players of the same day are more similar than

other players and non-player accounts, as we will describe in Section 4.4.1. We compare the

performance of StreamWalk and online second order similarity with online and static baseline

methods, which we will describe in Section 4.4.2.

4.4.1 Evaluation Metrics

We evaluate similarity search by a supervised experiment. In Section 2.2.2, we de�ned active

accounts as those corresponding to players with a game on the given day. For an active account

as query, we consider the other active account as the required similar pair. For each embedding

algorithm, we generate 128-dimensional node representations every six hours (6:00, 12:00, 18:00,

24:00). For online methods, we perform continuous updates over the edge stream. For the static

63

methods, we build the corresponding graph snapshots.

We use NDCG [4] to evaluate how other active accounts are similar to a selected one. NDCG is

a measure for ranked lists that assigns higher score if active accounts appear with higher rank in

the similarity list. In our experiments, we compute the average of the NDCG@100 for the active

accounts as query nodes to measure the performance of a single model in any given snapshot.

4.4.2 Baseline Models

We compare StreamWalk and online second order similarity to online (or time-aware) and static

(or batch) embedding methods. Online models are updated after the arrival of each edge. By

contrast, static representations are only updated once every six hours when the graph snapshot

ends. At hour t a static model is computed on the graph constructed from edges arriving in time

window [t − T, t] from the edge stream. For each batch baseline, we experimentally select the

best value of T .

We consider four static centrality measures as baseline:

� DeepWalk [118]

� Node2Vec [57]

� LINE [141]: the �rst and the second order versions of LINE, as well as the combination of

the two versions

� Static indegree, calculated in time window [t−T, t] by counting each edge with multiplicity

Furthermore, we compare our proposed algorithms with a simple online baseline:

� Decayed indegree, de�ned for node u at time t as

∑
zu∈E(t)

exp(−c(t− tzu)); (4.15)

where E(t) is the multi-set of edges that occurred up to time t with edge activation time

tzu.

We use the 128-dimensional representations of StreamWalk (SW), second order similarity (SO),

DeepWalk, Node2Vec, and LINE to measure node similarity over time. For the two degree

methods, we rank by degree without reference to the query node in the NDCG@100 formula.

64

4.4.3 Results

In our experiments, we measure how the similarity of node representations evolves over time by

a supervised evaluation in which the active nodes should be similar to each other. We show two

di�erent ways to describe the performance of a single model:

1. For each day, we present the mean NDCG@100 of the snapshots evaluated at 6:00, 12:00,

18:00, and 24:00.

2. As a single global value (NDCG@100), we take the average of NDCG@100(u) for each

daily player u in every snapshot.

For a given parametrization of every embedding-based method, we always show the average

performance of ten independent instances.

During our experiments, we found that the following parameters had a great impact on the

quality of online node embeddings, see Table 4.3:

W1 and W2: In Word2Vec, we have the option to optimize node representations for the input

(W1) or the output (W2) matrices [123]. It is application dependent whether W1 or W2

yields the better representation. For SW, we achieved the best results by W2.

Initialization: We experimented with Xavier [53] and uniform random initialization ofW1 and

W2.

Mirror: In our algorithms, the input to Word2Vec consists of node pairs. Given a training

instance (x, y), we mirror if we feed both (x, y) and (y, x), not just (x, y).

Decay: We heuristically map the representations of nodes with no recent activity to the null

Table 4.3: Mean global performance (NDCG@100) of StreamWalk with di�erent settings on the

�rst three day of RG17 and UO17 respectively.

matrix init type mirror decayed RG17 UO17

W1 Xavier yes no 0.1865 0.1695

W1 uniform yes no 0.2001 0.1818

W2 uniform yes no 0.2898 0.2386

W2 uniform no no 0.3272 0.2898

W2 uniform no yes 0.3341 0.2999

65

0 5 10 15 20
negative rate

0.22

0.24

0.26

0.28

0.30

0.32

ND
CG

@
10

0

SW

RG17 UO17

0 5 10 15 20
negative rate

0.28

0.29

0.30

0.31

0.32

ND
CG

@
10

0

SO

RG17 UO17

Fig. 4.8: The e�ect of negative sample rate on the global mean performance (NDCG@100) of

StreamWalk (left) and online second order similarity (right).

vector.

Negative sampling rate and past positive samples used: Key parameters of Word2Vec

analyzed separately in Fig. 4.8�4.9. Past positive samples are edges that appeared longer

time ago; using such edges for negative training helps forgetting the past.

Next, we examine the quality of node representations with respect to node pair sampling-related

parameters:

Time decay and half-life: By transforming the time decay parameter c, we show our results

as the function of half-life h = ln(2)/c in Fig. 4.10.

Number of walks sampled: The number of new training instances for SW and SO for a new

edge arrival is a parameter analyzed in Fig. 4.11.

We also combine the output of StreamWalk (SW) and second order similarity (SO) by using

the weighted average of the corresponding inner products as similarity. This method denoted

as SW+SO outperforms SW and SO, as seen in Fig. 4.12. The optimal weight of SO in the

combination is 0.3 for both RG17 and UO17.

In Table 4.4 we present the best global mean performance for each model. Fig. 4.13 shows the

daily mean performance of the best models.

For illustration, in Table 4.5 we present the 20 accounts most similar to that of Rafael Nadal

for di�erent node embeddings on 2017-May-31 18:00. Since Rafael Nadal played on this day,

the active accounts (yellow) belong to tennis players who participated in a game on this day.

The combined model SW+SO has the highest number of active player accounts. Furthermore,

66

0.0 0.2 0.4 0.6 0.8 1.0
fraction of past positive samples

0.26

0.28

0.30

0.32

ND
CG

@
10

0

SO

RG17 UO17

Fig. 4.9: The e�ect of past positive samples used as negative samples for SO when the latest

edge arrives.

2 6 12 24
half life (hours)

0.30

0.31

0.32

0.33

ND
CG

@
10

0

SW

RG17 UO17

2 6 12 24
half life (hours)

0.29

0.30

0.31

0.32

ND
CG

@
10

0
SO

RG17 UO17

Fig. 4.10: The e�ect of half-life on the global mean performance (NDCG@100) of StreamWalk

(left) and online second order similarity (right).

2 4 6 8 10
number of walks

0.22

0.24

0.26

0.28

0.30

0.32

ND
CG

@
10

0

SW

RG17 UO17

10 20 30 40
number of hash functions

0.27

0.28

0.29

0.30

0.31

0.32

0.33

ND
CG

@
10

0

SO

RG17 UO17

Fig. 4.11: The e�ect of sampled walks (left) and hash functions (right) on the global mean

performance (NDCG@100) for SW and SO respectively. These parameters control the number

of sampled node pairs we feed to online Word2Vec at every edge arrival.

67

0.0 0.2 0.4 0.6 0.8 1.0
weight

0.33

0.34

0.35

0.36

0.37

ND
CG

@
10

0

SW+SO

RG17 UO17

Fig. 4.12: Global mean performance of the combination of SW and SO with respect to the weight

of SO. The combined model (SW+SO) has superior performance with the optimal weight 0.3.

Table 4.4: Best mean global performance (NDCG@100) of each model for the Twitter tennis

data sets. Best performing methods are marked boldface.

model RG17 UO17

SW+SO 0.3683 0.3709

SW 0.3446 0.3455

SO 0.3283 0.3261

LINE 0.2946 0.2936

Node2Vec 0.2617 0.2562

decayed indegree 0.2973 0.2548

static indegree 0.2288 0.2073

accounts present in both SW and SO columns (e.g. B. Mattek-Sands, N. Djokovic, G. Dimitrov,

etc.) typically achieve higher position by SW+SO than SW. It is interesting to see that SW and

SO �nd di�erent active accounts, which explains why the combination SW+SO achieves superior

performance. While static LINE and Node2Vec have less relevant hits than our online methods,

most of the irrelevant accounts still belong to tennis players (e.g. A. Murray, S. Wawrinka,

etc.). The main di�erence is that the daily active players are better found by the online than

the static methods.

68

2 4 6 8 10 12 14
day

0.1

0.2

0.3

0.4

0.5

ND
CG

@
10

0

RG17
SW+SO
SW
SO
LINE
Node2Vec
decayed indegree
static indegree

2 4 6 8 10 12 14
day

0.1

0.2

0.3

0.4

0.5

ND
CG

@
10

0

UO17
SW+SO
SW
SO
Line
node2vec
decayed indegree
static indegree

Fig. 4.13: Best model performance over time for RG17 (top) and UO17 (bottom) tennis data

sets. For each day the average NDCG@100 over the four daily snapshots is presented.

69

Table 4.5: Similarity list of Rafael Nadal for models based on embeddings generated at 18:00

on May 31 (fourth day of RG17). Active player accounts are highlighted in yellow. With the

exception of a few renamed accounts (since 2017) most of the presented accounts can be still

searched for on Twitter.

SW+SO SW SO LINE Node2Vec

1 R. Haase R. Haase N. Basilashvili N. Djokovic R. Olivo

2 K. Mladenovic K. Mladenovic A. Hesse B. Paire G. Mon�ls

3 B. Mattek-Sands S. Johnson G. Muguruza A. Murray K. Mladenovic

4 S. Johnson B. Mattek-Sands G. Dimitrov F. Verdasco N. Djokovic

5 B. Coric B. Coric N. Djokovic G. Muguruza D. Schwartzman

6 rolandgarros rolandgarros M. Raonic JW. Tsonga JW. Tsonga

7 N. Djokovic C. Wozniacki PH. Herbert R. Haase A. Murray

8 C. Wozniacki N. Djokovic A. Bedene JM. del Potro A. Agassi

9 Cici Bellis Cici Bellis P. Kvitova G. Mon�ls K. Nishikori

10 S. Errani JP. Sousa rolandgarros C. Wozniacki H. Zeballos

11 G. Muguruza S. Errani WTA S. Wawrinka G. Muguruza

12 JP. Sousa G. Muguruza P. Parmentier V. Williams L. Mladenovic

13 G. Dimitrov V. Williams D. Thiem K. Mladenovic G. Bouchard

14 V. Williams G. Dimitrov K. Mladenovic D. Thiem N. Kyrgios

15 M. Raonic R. Olivo D. Cibulkova M. Granollers T. Kokkinakis

16 JW. Tsonga S. Williams A. Cornet N. Kyrgios JM. del Potro

17 J. Chardy JW. Tsonga D. Go�n P. Kvitova Babolat

18 A. Kontaveit A. Kontaveit G. Mon�ls C. Garcia V. Williams

19 D. Thiem K. Edmund B. Mattek-Sands Suspended F. Verdasco

20 D. Go�n S. Bolelli T. Bacsinszky R. Gasquet D. Ferrer

70

4.5 Conclusion

We introduced two online machine learning algorithms to extract temporal node representa-

tions from graph streams. The StreamWalk algorithm optimizes for the similarity of node pairs

extracted along temporal walks from the data stream, whereas online second order similarity

e�ciently learns neighborhood similarity over graph streams by MinHash �ngerprinting.

We measured the quality of these models in a supervised evaluation task that we implemented

using daily changing node relevance labels. In the RG17 and UO17 Twitter collections, we ana-

lyzed the similarity of node representations over time for both online and static node embedding

algorithms. Our methods SW and SO signi�cantly outperformed static Node2Vec, LINE, and

simple degree related baselines. The combination of SW and SO achieved superior performance.

71

72

Chapter 5

Vaccine skepticism detection by

network embedding

5.1 Introduction

We compiled a data set to demonstrate the applicability of network embedding to vaccine skep-

ticism, a controversial topic of long-past history that became more important than ever with the

Covid-19 pandemic. Only a year after the �rst international cases were registered, multiple vac-

cines were developed and passed clinical testing. Besides the challenges of development, testing

and logistics, another factor in the �ght against the pandemic are people who are hesitant to get

vaccinated, or even state that they will refuse any vaccine o�ered to them. In this study, we focus

on two groups of people commonly referred to as a) pro-vaxxer, those who support vaccinating

people b) vax-skeptic, those who question vaccine e�cacy or the need for general vaccination

against Covid-19. It is very di�cult to tell exactly how many people share each of these views.

It is even more challenging to understand all the reasoning why vax-skeptic opinions are getting

more popular.

In this work, our intention was to develop techniques that are able to di�erentiate between pro-

vaxxer and vax-skeptic content e�ciently. After multiple data preprocessing steps, we evaluated

Twitter content and user interaction network classi�cation by combining text classi�ers with sev-

eral node embedding and community detection models from an open-source Python library [128].

While several methods exist to embed by text content [140] as well as by network structure [128],

we are aware of only a few results that combine the two [55,159,165]. Similar experiments [107]

73

and a data set [99] were published very recently.

5.2 Data collection

From January 7 to August 7, we collected data that anyone can view on Twitter using the

free Twitter API. By specifying the keywords �vaccine�, �vaccination�, �vaccinated�, �vaxxer�,

�vaxxers�, �#CovidVaccine� and �covid denier�, we collected 54,427 seed tweets, each with at

least 50 replies (recursively). To eliminate drift towards topics of general politics such as US

parties, we excluded the keywords �Trump�, �Biden�, �republican�, �democrat�. We considered

seed tweets only in English. For each seed tweet, we collected the corresponding replies as well

to build a reply network between Twitter users. In total, we collected almost 9 million replies.

In our experiments, we reduced the reply network to 579, 159 nodes and 4, 156, 502 edges by

dropping users with less than 3 connections.

We randomly annotated 9.35% of the seed tweets in our data set with four di�erent labels:

pro-vaxxer (2, 626 tweets), irrelevant (1, 438 tweets), vax-skeptic (681 tweets) and anti-vaxxer

(344 tweets). We found that it is even hard for humans to di�erentiate between vax-skeptic and

anti-vaxxer content thus we merged anti-vaxxers into the vax-skeptic category. Furthermore,

we excluded tweets labeled as irrelevant to avoid over�tting for politics, celebrities or other

special events reported by the mainstream media. This way, we prepared the data for binary

classi�cation that includes 2, 626 (71.93%) pro-vaxxer and 1, 025 (28.07%) vax-skeptic tweets.

In Figure 5.1, we show the 50 most popular words for these categories. Child vaccination,

side e�ects, and death case reports were some of the most popular topics for vax-skeptic users.

Personal experience of the vaccination, daily administered vaccine status reports, and eligibility

for di�erent age groups were in the highlight for pro-vaxxers. A good separation in sentiment

can also be observed for the two groups through emojis. In Figure 5.2, there are only two emojis

(syringe, clapping hands) in the intersection for the 20 most popular emojis of pro-vaxxers and

vax-skeptic users.

5.3 Results

We trained a binary classi�er to predict the vaccine view (pro-vaxxer or vax-skeptic) for each

tweet. For classi�cation, we used the following three modalities with logistic regression:

1. text: 1, 000 dimensional TF-IDF vector of tweet text (cleaned emojis, hashtags included);

74

Fig. 5.1: Popular words for pro-vaxxer (left) and vax-skeptic (right) tweets.

Fig. 5.2: Popular emojis for pro-vaxxer (left) and vax-skeptic (right) tweets.

2. history: Minimum, maximum, mean, and standard deviation of the past tweet labels of

the same user;

3. embedding: 128-dimensional user representation obtained by Walklets [120] over the

Twitter reply network.

We split the tweet data in time to 70% training and 30% testing. Our results are summarized

in Table 5.1. Not surprisingly, user statistics have a strong contribution as users usually stick to

their past opinion. User representations from the Twitter reply network improve performance,

as seen in Figure 5.3. Indeed, tweets posted by users with no past label could be better inferred

based on their social relations. Walklets [120], the best performing node embedding model in

Figure 5.4, even managed to �nd pro-vaxxer and vax-skeptic user clusters, see Figure 5.5.

Next, we show that due to its multi-scale learning capability, Walklets could also reveal the topic

hierarchy of vax-skeptic and pro-vaxxer users. For each word, we take the weighted average rep-

75

Table 5.1: Model performance with di�erent feature components. Performance gain is shown

with respect to the simple baseline using only textual information.

Feature components AUC gain (%) Accuracy gain (%)

text 0.8385 - 0.7559 -

text+history 0.8743 4.27 0.7769 2.78

text+embedding 0.9049 7.92 0.8427 11.48

text+embedding+history 0.9130 8.88 0.8473 12.09

Fig. 5.3: Dynamic model performance based on a 7-day sliding window.

resentation of the users that mentioned it in their tweets. First, we analyze the vax-skeptic topic

space. In the center of Figure 5.6, there are three anti-vaxxer topics related to child death, fear

from the mRNA-based technology, and vaccine refusal induced by safety or free choice concerns.

On the other hand, the periphery includes less o�ensive topics like politics, medical arguments,

discussions related to AstraZeneca reactions, immunity doubts, and whether young and healthy

people should generally vaccinate or not. As for pro-vaxxers in Figure 5.7, scienti�c news related

to di�erent levels of protection o�ered by Covid-19 vaccines are in the center. Two adjacent

topics in the top-right region of the representation space are international news and the vaccina-

tion process in general, including eligibility for di�erent age groups. Finally, in the bottom-left

region, we can see personal vaccination reports sometimes related to friends and family. A few

side e�ects and post-vaccination symptoms are closely related to these conversations.

76

Fig. 5.4: Performance with respect to di�erent node embedding and community detection models.

3 2 1 0 1 2

4

3

2

1

0

1

2

3
Vaccine view

Skeptic
Pro

3 2 1 0 1 2
4

3

2

1

0

1

2

3
Vaccine view

Skeptic
Pro

Fig. 5.5: Walklets clusters pro-vaxxer and vax-skeptic users well in the embedded space. On the

left we show the kernel density estimation of the two groups for the whole test period, while on

the right only active users between 5-13 May are visualized.

5.4 Conclusion

In this work, we quantitatively showed that social interactions play a major role in detecting

vaccine skepticism. By deploying multiple node embedding models on a large Twitter reply

network, we managed to discover pro-vaxxer and vax-skeptic communities. It was also interesting

to see that Walklets successfully captured the topic hierarchy for di�erent vaccine views on a

very �ne-grained level.

For reproducibility and future research purposes, we share our data on GitHub1. In order to

comply with the data publication policy of Twitter, we only share the user ID, original and reply

tweet IDs along with the encoded content vectors.

1https://github.com/ferencberes/covid-vaccine-network

77

https://github.com/ferencberes/covid-vaccine-network

Fig. 5.6: Vax-skeptic topic space uncovered by Walklets embeddings.

Fig. 5.7: Pro-vaxxer topic space uncovered by Walklets embeddings.

78

Chapter 6

Pro�ling and Deanonymizing Ethereum

Users

The narrative around cryptocurrency privacy provisions has dramatically changed since the in-

ception of Bitcoin [102]. Initially many, especially criminals, thought Bitcoin and other cryp-

tocurrencies provide privacy to hide their illicit business activities [38]. The �rst extensive study

about Bitcoin's privacy provisions was done by Meiklejohn et al. [92], in which they provide

several powerful heuristics allowing one to cluster Bitcoin addresses. The revelation of Bitcoin's

privacy shortcomings spurred the creation and implementation of many privacy-enhancing over-

lays for cryptocurrencies.

Ethereum is the largest public blockchain by usage. It is an account-based cryptocurrency where

users store their assets in accounts rather than in unspent transaction outputs (UTXOs) as

they do for Bitcoin. In an account-based cryptocurrency, native transactions can only move

funds between a single sender and a single receiver, hence in a payment transaction, the change

remains at the sender account. Thus, a subsequent transaction necessarily uses the same address

again to spend the remaining change amount. Therefore, the account-based model essentially

relies on address-reuse on the protocol level. This behavior practically renders account-based

cryptocurrencies inferior to UTXO-based currencies from a privacy perspective.

In our privacy analysis of Ethereum's account-based model, we describe several patterns that

characterize only a limited set of users and successfully apply these �quasi-identi�ers� in address

deanonymization tasks.

79

6.1 Our results

Prior to our work, we are aware of no empirical studies on account-based cryptocurrency privacy

provisions. Therefore in this work, we put forth the problem of studying the privacy guarantees

of Ethereum's account-based model.

In our �rst contribution, we identify and apply several quasi-identi�ers stemming from address

reuse, which allow us to pro�le and deanonymize Ethereum users.

In order to assess the performance of quasi-identi�ers, we collected Ethereum related data from

several sources, including Ethereum name service (ENS), Etherscan blockchain explorer, Tor-

nado Cash mixer contracts, and Twitter. Using ENS identi�ers as ground truth information, we

quantitatively compare algorithms in a recent branch of machine learning, the so-called graph

representation learning, as well as time-of-day activity and transaction fee based user pro�l-

ing techniques. We are the �rst to quantitatively assess the performance of node embedding

algorithms in the cryptocurrency domain.

Assessing and understanding the privacy guarantees of cryptocurrencies is essential as there are

several companies or other entities, e.g. Chainalysis [106], performing large-scale deanonymiza-

tion tasks on cryptocurrency users. In order to better showcase the loss of privacy caused by a

quasi-identi�er, we use three di�erent performance metrics that we introduce in Section 6.5.

Finally, as an application, we explore the privacy guarantees of the Tornado Cash (TC) non-

custodial mixer on Ethereum. In light of our results, we propose a few techniques that could

potentially improve the privacy of the TC mixer.

We release the collected data (in anonymized form) as well as our source code for further re-

search1.

6.2 Background

In this section, we provide some background on Ethereum and a few related technologies and

services.

1https://github.com/ferencberes/ethereum-privacy

80

https://github.com/ferencberes/ethereum-privacy

6.2.1 Ethereum basics

Ethereum is a cryptocurrency built on top of a blockchain [157]. There are two types of accounts

in Ethereum: externally owned accounts (EOAs) and contract accounts, also known as smart

contracts. The global state of the system consists of the state of all di�erent accounts. EOAs are

controlled by an asymmetric cryptographic key pair, while smart contracts are controlled by their

code stored in persistent, immutable storage. Contract code is executed in the Ethereum Virtual

Machine (EVM). EOAs can issue transactions, which might alter the global state. Transactions

can either create a new contract account or call existing accounts. Accounts have balances in ether

(ETH), the native currency of Ethereum, and are denominated in wei where 1ETH = 1018wei.

A crucial aspect of the EVM is the gas mechanism. To every EVM opcode, there is a gas

amount assigned, which is deemed to price the computational complexity of that opcode. There-

fore, whenever one executes a smart contract code in the EVM, the execution consumes a certain

amount of gas. At each transaction, the sender needs to de�ne the maximum number of gas,

called gas limit, they allow their transaction to consume. If a transaction does not consume all

the gas assigned to it, then surplus gas is refunded to the caller, however, if a transaction runs

out of gas, then all state changes are reverted and assigned gas is taken from the caller.

As of now, gas can only be purchased by Ethereum's native currency, ether, at a dynamically

changing price, called gas price. Essentially, the gas price allows participants to prioritize their

transactions as the transaction fee can be expressed as txFee = gasPrice∗gasLimit. Therefore,

miners are naturally incentivised to insert transactions with higher gas prices into their blocks

to increase their collected transaction fees.

6.2.2 Ethereum Name Service

Ethereum Name Service (ENS) is a distributed, open, and extensible naming system based on

the Ethereum blockchain. It is similar to the well-known Domain Name Service (DNS). However,

in ENS, the registry is implemented in Ethereum smart contracts2. Hence, it is resistant to DoS

attacks and data tampering. Like DNS, ENS operates on a system of dot-separated hierarchical

names called domains, with the owner of a domain having full control over subdomains. ENS

maps human-readable names like alice.eth to machine-readable identi�ers, e.g., Ethereum ad-

dresses. Therefore, ENS provides a user-friendly way of moving assets on Ethereum, where users

2See: https://docs.ens.domains

81

https://docs.ens.domains

can use ENS names (alice.eth) as recipient addresses instead of the error-prone hexadecimal

Ethereum addresses.

6.2.3 Non-custodial mixers

Coin mixing is a prevalent technique to enhance the transaction privacy of cryptocurrency users.

Coin mixers may be custodial or non-custodial. In case of custodial mixing, users send their

�tainted� coins to a trusted party, who in return sends back �clean� coins after some timeout.

This solution is not satisfactory as the users do not retain ownership of their coins during the

course of mixing.

Motivated by these drawbacks, recently several non-custodial mixers have been proposed in the

literature [91,135,137,156]. The recurring theme of non-custodial mixers is to replace the trusted

mixing party with a publicly veri�able transparent smart contract or with secure multi-party

computation (MPC). Non-custodial mixing is a two-step procedure, as illustrated in Figure 6.1.

First, users deposit equal amounts of ether or other tokens into a mixer contract from an address

A. After some user-de�ned time interval, they can withdraw their deposited coins with a with-

drawal transaction to a fresh address B. In the withdrawal transaction, users can prove to the

mixer contract that they deposited without revealing which deposit transaction was issued by

them by using one of several available cryptographic techniques, including ring signatures [91],

veri�able shu�es [135], threshold signatures [137], and zkSNARKs [156].

Cryptocurrency mixers typically provide k-anonymity to their users [132]. Generally speaking, a

k-anonymized dataset has the property that each record is indistinguishable from at least k − 1

others. Speci�cally, if a mixer contract holds n deposits out of which n − k had already been

withdrawn, then the next withdrawer will be indistinguishable among at least those k users who

have not withdrawn from the mixer yet. Hence each withdrawer can enhance their transaction

privacy and make their identity indistinguishable among at least k addresses. We call the set

containing the k indistinguishable addresses the anonymity set of the user.

1. Deposit tx
2. Withdraw tx

3. Refunds

Mixer Contract
Address BAddress A

Fig. 6.1: Schematic depiction of non-custodial mixers on Ethereum

82

6.3 Review of related work

First results on Ethereum deanonymization [78] attempted to directly apply both on-chain and

peer-to-peer (P2P) Bitcoin deanonymization techniques. The starting point of our work is the

recognition that common deanonymization methods for Bitcoin are not applicable to Ethereum

due to di�erences in Ethereum's P2P stack and account-based model.

The relevant body of more recent literature takes two di�erent approaches. The �rst approach

analyzes Ethereum smart contracts with unsupervised clustering techniques [110]. Ki�er et

al. [75] assert a large degree of code reuse which might be problematic in the case of vulnerable

and buggy contracts.

The second branch of literature assesses Ethereum addresses. A crude and initial analysis had

been made by Payette et al., who clusters the Ethereum address space into only four di�erent

groups [117]. More interestingly, another work [148] proposes address clustering techniques

based on participation in certain airdrops and ICOs. These techniques are indeed powerful.

However, they do not generalize well as it assumes participation in certain on-chain events.

Our techniques are more general and are applicable to all Ethereum addresses. Victor et al.

gave a comprehensive measurement study of Ethereum's ERC-20 token networks, which further

facilitates the deanonymization of ERC-20 token holders [149].

A completely di�erent and unique approach is taken by [83], which uses stylometry to deanonymize

smart contract authors and their respective accounts. The work had been used to identify scams

on Ethereum.

We introduced node embedding algorithms as a class of network representation learning methods

that map graph nodes to vectors in a low-dimensional vector space in Chapter 4. As feature

mapping techniques are not limited to single-hop transaction neighbors, they have the potential

to surpass intersection attacks [54]. For example, GraRep [35] can represent multi-hop neighbor-

hood similarity, while Di�2Vec [129] can preserve distances between nodes by sampling di�usion

trees during the training process. On the other hand, Role2Vec [3], a structural node embed-

ding method assigns similar vectors to two addresses if they have similar motif structure in the

transaction graph despite their distance in the network. To the best of our knowledge, we are

the �rst to apply node embedding for Ethereum user pro�ling.

83

Table 6.1: Number of Ethereum accounts collected from three di�erent sources. ∗In the Tornado

Mixer, we consider account pairs identi�ed by careless usage patterns as ground truth, see Sec-

tion 6.7. Due to overlaps between the data sources, the total number of investigated addresses

is less than the sum of the records in the top three rows.

Source Total At least 5 Used as ground

sent txs truth pairs

Twitter 1364 1260 129

Tornado Cash 2361 1618 ∗189

Humanity-Dao 695 602 n/a

All 4259 3321 318

6.4 Data collection

Our experiments were motivated by a Twitter movement that gained momentum in November

2019. Many ENS users posted their ENS name on their Twitter pro�le in order to facilitate

transactions for those who want to interact with them on the Ethereum network. By discovering

the Ethereum addresses linked to the published ENS names, we can quantitatively evaluate

pro�ling techniques.

We collected addresses related to regular users and not automatic (trader or exchange) bots from

the following publicly available data sources. Twitter: By using the Twitter API3, we were able

to collect 890 ENS names included in Twitter pro�le names or descriptions, and discover the

connected Ethereum addresses, see Figure 6.2. Humanity DAO:4A human registry of Ethereum

users, which can include a Twitter handle in addition to the Ethereum address. Tornado Cash

mixer contracts: We collected all Ethereum addresses that issued or received transactions from

Tornado Cash mixers up to 2020-04-04. Table 6.1 shows the total number of addresses collected

from each data source as well as addresses with at least 5 sent transactions. We note that there

are overlaps between the three address groups, see the last row of Table 6.1.

By using the Etherscan blockchain explorer API, we collected 1,155,188 transactions sent or

3Using the Twitter Search and People API endpoints, we collected tweets containing the following keywords

{'@ensdomains','.eth','ENS name','ENS address', 'ethereum', '#ethereum'} as well as pro�les with an ENS name

in their displayed pro�le name or description. We also searched for ENS names in the name and description of

every account in our data. Twitter data collection lasted from 2019-11-15 until 2020-03-05.
4See: https://www.humanitydao.org/humans

84

https://www.humanitydao.org/humans

1 2 3 4 5 more
Unique addresses per ENS name

101

102

Nu
m

be
r o

f E
NS

 n
am

es
Fig. 6.2: Unique address count of ENS names collected from Twitter. Most of the ENS names in

our collection are linked to a single Ethereum address, while some entities use multiple accounts.

In Section 6.6, we use ENS names with exactly two unique addresses (green) to measure the

performance of di�erent pro�ling techniques.

Twitter Tornado Humanity-Dao
Source

0

100

200

300

Av
er

ag
e

tx
 c

ou
nt

Direction
sent
received

Fig. 6.3: Average number of transactions sent or received by the addresses of each data source.

Tornado accounts have less transactions as the service has only recently been launched.

received by the 4259 regular user accounts in our collection (see Table 6.1). The �nal transaction

graph contains 159,339 addresses, and the transactions span from 2015-07-30 until 2020-04-04.

Figure 6.3 shows the average number of transactions sent and received only by the accounts

in the three data sources. Addresses collected from Twitter and Humanity DAO have similar

characteristics, while Tornado accounts have fewer transactions since Tornado Cash has only

recently been launched at the time of our research.

Due to ethical considerations, we took several steps to anonymize our published dataset. For

example, we transformed ENS names to hash values and we also removed links to real-world

identities, e.g., Twitter accounts.

85

6.5 Evaluation measures

In this work, we propose deanonymization methods, i.e., pairing Etherum addresses of the same

user (Section 6.6), Tornado deposits and withdrawals (Section 6.7). To establish an appropriate

measure for evaluating our methods, we face the diversity and complexity of estimates of the

adversary's success to breach privacy. In the literature, the adversary's output takes the form of

a posterior probability distribution, see the survey [151].

The simplest metrics consider the success rate of a deanonymizing adversary. Metrics such as

accuracy, coverage, the fraction of correctly identi�ed nodes [103, 105] are applicable only when

the attack has the potential to exactly identify a signi�cant part of the network.

Exact identi�cation is an overly ambitious goal in our experiments, which aim to use limited

public information to rank candidate pairs and quantify the leaked information as the risk for a

potential systematic deanonymization attack. For this reason, we quantify non-exact matches.

Since even though our deanonymizing tools might not exactly �nd a mixing address, they can

radically reduce the anonymity set, which is still harmful to privacy. We want to quantify the

information leaked from network structure, time-of-day activity, and gas price usage to assess

the implications for the future privacy [104] of the account owners.

In our deanonymization experiments, our algorithms will return a ranked list of candidate pairs

for each account in our testing set. Based on the ranked list, we propose a simple metric, the

average rank of the target in the output.

Recent results consider deanonymization as a classi�cation task and use AUC for evaluation [86].

In our experiments, we will compute AUC by the following claim:

Lemma 6.5.1. Consider a set of accounts a, each with a set of candidate pairs c(a) such that

exactly one in c(a) is the correct pair of a. Let an algorithm return a ranked list of all sets c(a).

The AUC of this algorithm is equal to the average of r(a)/|c(a)| over all a, where r(a) is the

rank of the correct pair of a in the output.

Proof. Follows since AUC is the probability that a randomly selected correct record pair is ranked

higher than another incorrect one [62].

Finally, we consider evaluation by variants of entropy, which quantify privacy loss by the number

of bits of additional information needed to identify a node. De�ning entropy is di�cult in our case

86

for two reasons. First, our algorithms provide a ranked list and not a probability distribution.

Second, for the Tornado Cash mixer deanonymization, the anonymity set size is dynamic, as

users can freely deposit anytime they wish, hence, increasing the anonymity set size.

In the literature, entropy based evaluation considers the a priori knowledge without a deanonymiza-

tion method and the a posteriori knowledge after applying one [136]. Several papers compute the

entropy of the a posteriori knowledge [44,104,136]. However, they assume that the deanonymizer

outputs a probability distribution of the candidate records [104].

The information the attacker has learned with the attack can be expressed as the di�erence of the

a priori and a posteriori entropy. We call this di�erence the entropy gain, denoted as gain(n, p)

where n and p are the anonymity set size and probability distribution, respectively. The a

priori entropy of the target record is typically the base-2 logarithm of the a priori anonymity set

size. The problem with varying a priori anonymity set size is that while correctly selecting ten

candidate users from a pool of a million is a great achievement, the same entropy of log2(10) is

achieved without deanonymization if the initial pool size, for example in a low-utilization mixer,

is only 10. We note that in [44], the authors also divide the entropy gain to normalize the value.

Next, we describe a new method to infer the a posteriori distribution given varying a priori

knowledge and appropriately normalize with respect to the a priori entropy. More precisely,

�rst we give a heuristic argument that the a priori anonymity set size has little e�ect on the

entropy gain, and hence we can compare and average across di�erent measurements. In the

formula below, given an a priori anonymity set size 2n vs. n, we compare the entropy gain of the

same distribution p, gain(2n, p) − gain(n, p). In the formula below, pi denotes the probability

p([(i− 1)/(2n), i/(2n)]) for i = 1, · · · , 2n.

gain(2n, p) = log2(2n) +

2n∑
i=1

pi log2(pi);

gain(n, p) = log2(n) +

n∑
j=1

(p2j−1 + p2j) log2(p2j−1 + p2j).

Since log2(2n)− log2(n) = 1 =
∑2n

i=1 pi =
∑n

j=1(p2j−1 + p2j), we may group the terms to obtain

the di�erence in the entropy gain as the sum for 1 ≤ j ≤ n of

87

(p2j−1 + p2j) + p2j−1 log2(p2j−1) + p2j log2(p2j)− (p2j−1 + p2j) log2 (p2j−1 + p2j) =

p2j−1 log2(p2j−1) + p2j log2(p2j)− (p2j−1 + p2j) log2

(
p2j−1 + p2j

2

)
=

p2j−1 log2

(
2p2j−1

p2j−1 + p2j

)
+ p2j log2

(
2p2j

p2j−1 + p2j

)
,

(6.1)

which can be bounded from above by using log x < x− 1 as

p2j−1

(
2p2j−1

p2j−1 + p2j
− 1

)
+ p2j

(
2p2j

p2j−1 + p2j
− 1

)
=

2

p2j−1 + p2j

(
p2

2j−1 + p2
2j

)
− (p2j−1 + p2j) =

(p2j−1 − p2j)
2

p2j−1 + p2j
.

(6.2)

If the probability distribution is smooth with little density changes in a neighborhood, the above

value (p2j−1−p2j)2
p2j−1+p2j

is very small. For example, the value is small if pi is monotonic in i, which at

least approximately holds in our experiments.

Based on the above argument, we may infer an empirical probability distribution of the

candidates ranked by an algorithm. For each a priori size n and rank r for the ground truth

pair of a target record, we de�ne the distribution P (n, r) to be uniform in [(r − 1)/n, r/n],

and 0 elsewhere, in accordance with formula (6.1). The empirical probability distribution of an

algorithm will be the average of P (n, r) over all the output of the algorithm. In the discussion,

we will use the entropy gain of the above empirical probability distribution to quantify the

deanonymization power of our algorithms.

6.6 Linking Ethereum accounts of the same user

In this section, we introduce our approach to identify pairs of Ethereum accounts that belong to

the same user. In our measurements, we investigate three quasi-identi�ers for each account: the

time-of-day activity, the gas price selection as well as a low-dimensional vector space represen-

tation that represents the Ethereum transaction graph structure.

6.6.1 Ground truth data

We evaluate our methods by using the set of address pairs in our collection that belong to the

same name in the Ethereum Name Service (ENS), see Figure 6.4. We consider 129 ENS names

88

*ENS (Ethereum Name Service): mapping string to long address hashes

address 1

address 2

address 3

address 4

address 5

address 6

alice.eth

bob.eth

firm.eth

Alice

Bob

???

EntitiesENS names* AccountsTwitter

Search API

Fig. 6.4: We use the ENS names, collected from Twitter, as ground truth information in the

Ethereum account linking tasks. For example, Address 1�2 and Address 4�5 belong to di�erent

entities, as suggested by the related ENS names.

with exactly two Ethereum addresses to avoid the possible validation bias caused by ENS names

with more than two addresses, see Figure 6.2. We note that Ethereum addresses connected to

multiple ENS names were excluded from our experiments.

6.6.2 Time-of-day transaction activity

Ethereum transaction timestamps reveal the daily activity patterns of the account owner. For

example, Figure 6.5 shows that Ethereum users are not uniformly active in hours measured in

GMT. Given the set of timestamps, an account is represented by the vector including the mean,

median and standard deviation, as well as the time-of-day activity histogram divided into bhour

bins. In the top row of Figure 6.7, we show time-of-day pro�les for two ENS names that are

active in di�erent time zones.

6.6.3 Gas price distribution

Ethereum transactions also contain the gas price, which is usually automatically set by the wallet

software. Users rarely change this setting manually. Most wallet user interfaces o�er three levels

of gas prices, slow, average, and fast where the fast gas price guarantees almost immediate

inclusion in the blockchain.

The changes in daily Ethereum tra�c volume sometimes cause temporary network congestion,

89

0 4 8 12 16 20
Hour (GMT)

0

25000

50000

75000

Co
un

t

Fig. 6.5: Time-of-day distribution of Ethereum

transactions

0 1 2 3 4
Normalized gas price

0

50000

100000

Co
un

t

Fig. 6.6: Normalized gas price distribution of

Ethereum transactions. Outliers above 5 are

omitted.

which a�ects user gas prices. Hence, we normalized the gas price by the daily network average.

In Figure 6.6, the two peaks of the normalized gas price around 0.5 and 1 correspond to the

slow and average gas price options. On the other hand, users only occasionally charge more than

three times the daily average gas price. The combination of the gas price levels forms the gas

price pro�le for each Ethereum user. In the bottom row of Figure 6.7, we show normalized gas

price pro�les for two ENS names.

Given the normalized gas prices of the transactions sent, an address is represented by the vector

including the mean, median and standard deviation, and the normalized gas price histogram

divided into bgas bins.

6.6.4 Graph representation learning

The set of addresses used in interactions characterize a user. Users with multiple accounts might

interact with the same addresses or services from most of them. Furthermore, as users move

funds between their personal addresses, they may unintentionally reveal their address clusters.

Our deanonymization experiments are conducted on a transaction graph with nodes as Ethereum

addresses and edges as transactions. We deployed twelve node embedding methods from the

library5 of Rozenberczki et al. [128] to discover address pairs that might belong to the same user.

To compute the node embedding, certain graph preprocessing steps are required. First, we

considered transactions as undirected edges and removed loops and multi-edges. We also excluded

nodes outside the largest connected component. Due to the data collection techniques described

5https://github.com/benedekrozemberczki/karateclub

90

0 4 8 12 16 20
Hour (GMT)

0

50

100

150

200

250

300

Tx
 c

ou
nt

User A

0 4 8 12 16 20
Hour (GMT)

0

10

20

30

40

50

Tx
 c

ou
nt

User B

0 1 2 3 4 5
Normalized gas price

0

200

400

600

Tx
 c

ou
nt

0 1 2 3 4 5
Normalized gas price

0

10

20

30

40

50

Tx
 c

ou
nt

Fig. 6.7: Time-of-day (top row) and normalized gas price (bottom row) pro�les for two ENS

names (User A, User B) with a pair of addresses each. Both the time-of-day and gas price

selection are similar in case of User B addresses (red, green) while the addresses of User A (blue,

orange) have di�erent gas price pro�les. Addresses are denoted by di�erent colors.

in Section 6.4, our transaction graph has two main components. The majority of the nodes have

only one transaction, hence they reside on the periphery of the network, see Table 6.1. On the

other hand, the core of the network contains the popular Ethereum services. Since the periphery

adds little to the graph structure, we excluded nodes with degree one before training the node

embedding models.

The resulting graph has 16,704 nodes and 132,231 edges. We generated 128-dimensional embed-

dings for the nodes (addresses), which is the standard setting for graph representation learning

tasks [119, 142]. In order to compare with timestamp and gas price representations, we assign

the overall average of the network embedding vectors to the removed nodes.

6.6.5 Evaluation

Based on timestamp, gas price distributions or network embedding, we generate Euclidean feature

vectors for 3321 Ethereum addresses with each having at least �ve transactions sent, see Table 6.1.

Given a target address, we order the remaining addresses by their Euclidean distance from the

target with respect to their representations.

In the evaluation, we use 129 address pairs that belong to the same ENS name. The accuracy

91

2 3 4 6 8 12 24
Number of bins (bhour)

1000

1050

1100

1150

Av
er

ag
e

ra
nk

Granularity of daily activity
Only statistics

2 3 4 6 8 12 24
Number of bins (bhour)

0.66

0.68

0.70

AU
C

Granularity of daily activity
Only statistics

2 3 4 6 8 12 24
Number of bins (bhour)

0.20

0.25

0.30

0.35

0.40

En
tro

py
 g

ai
n

Granularity of daily activity

Only statistics

2 3 4 5 10 20 50 100
Number of bins (bgas)

1350

1400

1450

Av
er

ag
e

ra
nk

Granularity of normalized gas price
Only statistics

2 3 4 5 10 20 50 100
Number of bins (bgas)

0.57

0.58

0.59

0.60

AU
C

Granularity of normalized gas price

Only statistics

2 3 4 5 10 20 50 100
Number of bins (bgas)

0.06

0.08

0.10

0.12

En
tro

py
 g

ai
n

Granularity of normalized gas price
Only statistics

Fig. 6.8: Average rank, AUC and entropy gain at di�erent granularity for daily activity textbf(top

row) and normalized gas price (bottom row). Dashed lines show performance with only mean,

median and standard deviation used.

metrics of Section 6.5 for identifying accounts of the same user by using only time-of-day activity

or normalized gas price is given in Figure 6.8. While time-of-day representation works best

with bhour = 6 (four-hour-long bins), normalized gas price representation performs weaker and

the related histogram gives only a small improvement with bgas = 50 over the case when the

representation contains only the mean, median and standard deviation.

The average performance of the twelve di�erent node embedding algorithms is shown in Figure 6.9

based on ten independent experiments. The two best performing methods are Di�2Vec [129] and

Role2Vec [3]. Note that these algorithms capture di�erent aspects of the same graph. Di�2Vec

is a neighbourhood preserving model that performs strongly in community detection tasks [129].

In contrast, Role2Vec encodes the motif structure of the Ethereum addresses to successfully infer

their function or role in the transaction graph. We achieved the best Ethereum address linking

performance by the combination of Di�2Vec and Role2Vec, taking the harmonic average of the

ranks for each account in the two candidate lists. Thus the combination of Di�2Vec and Role2Vec

showed that di�erent addresses of the same entity are usually in the same cluster or community

performing similar roles.

In Figure 6.10, we show the fraction of pairs where the rank of the ground truth pair is not more

than a given value. Surprisingly, Di�2Vec and Role2Vec �nd the corresponding ENS address

pairs within 100 closest representations by almost 20% more likely than time-of-day activity and

gas price statistics. Our combination based approach further improves the performance.

92

Co
m

bi
ne

d
Di

ff2
Ve

c
Ro

le
2V

ec
De

ep
W

al
k

W
al

kl
et

s
Ne

tM
F

Bo
os

tN
E

Gr
aR

ep
La

pl
ac

ia
n

Ei
g.

HO
PE

No
de

Sk
et

ch
NM

F-
AD

M
M

Gr
ap

hW
av

e400

600

800

1000

1200

1400

1600

Av
er

ag
e

ra
nk

Daily activity Norm. gas price

Co
m

bi
ne

d
Di

ff2
Ve

c
Ro

le
2V

ec
De

ep
W

al
k

W
al

kl
et

s
Ne

tM
F

Bo
os

tN
E

Gr
aR

ep
La

pl
ac

ia
n

Ei
g.

HO
PE

No
de

Sk
et

ch
NM

F-
AD

M
M

Gr
ap

hW
av

e0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

AU
C

Daily activity Norm. gas price

Co
m

bi
ne

d
Di

ff2
Ve

c
Ro

le
2V

ec
De

ep
W

al
k

W
al

kl
et

s
Ne

tM
F

Bo
os

tN
E

Gr
aR

ep
La

pl
ac

ia
n

Ei
g.

HO
PE

NM
F-

AD
M

M
No

de
Sk

et
ch

Gr
ap

hW
av

e

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

En
tro

py
 g

ai
n

Daily activity Norm. gas price

Fig. 6.9: Average rank, AUC and entropy gain for node embedding methods. Vertical lines show

standard deviation in 10 independent experiments. Reciprocal rank combination of Di�2Vec and

Role2Vec gives the best performance.

101 102 103

Maximum rank

0.0

0.2

0.4

0.6

0.8

Fr
ac

tio
n

Daily activity
Norm. gas price

Role2Vec
Diff2Vec

Combined

Fig. 6.10: Fraction of ENS address pairs correctly identi�ed within a given maximum rank, for

di�erent embedding methods.

Our results show that the proposed pro�ling techniques link Ethereum addresses of the same

user signi�cantly better than random guessing. More precisely, the combination of Di�2Vec and

Role2Vec yield 1.6 bits of additional information on account owners, see entropy gain results in

Figure 6.9. In other words, we can reduce the anonymity set of a particular address by a factor

of 21.6 ≈ 3.0314.

In general, node embedding algorithms turn out to be more powerful for the Ethereum address

deanonymization task than less elaborate time-of-day and gas price pro�les. The latter techniques

are only reliable if there are not many users in the same time zone or gas price pro�le. In contrast,

graph representation learning can extract more complex descriptors that identify entities better.

93

15
 D

ec

01
 Ja

n

15
 Ja

n

01
 F

eb

15
 F

eb

01
 M

ar

15
 M

ar

01
 A

pr

0

500

1000

1500
Number of total deposits

0.1ETH
1ETH
10ETH
100ETH

Fig. 6.11: The number of total deposits in each TC mixer from December 2019 to April 2020.

This is an upper bound for the achievable anonymity set size when a withdraw transaction is

executed. The popularity of the 0.1ETH mixer is superior compared to higher value mixers.

6.7 Deanonymizing trustless mixing services

Privacy-enhancing tools became crucially important gadgets in the Ethereum ecosystem. The

most popular is Tornado Cash (TC), a non-custodial zkSNARK-based mixer. The TC mixers

are sets of Ethereum smart contracts allowing users to enhance their anonymity. Each TC mixer

contract holds equal amounts of funds from a set of depositors. In Figure 6.11, we show the

changes in the anonymity set size over time for four TC mixer contracts (0.1 ETH, 1 ETH, 10

ETH, 100 ETH) respectively. Since TC was launched in December 2019, hundreds of deposits

were placed in the mixers as more and more user interacted with this service. In general, we

observe orders of magnitude lower activity for the 100ETH mixer, thus it does not provide as

much anonymity as mixers with lower values (0.1ETH, 1ETH, 10ETH).

Unfortunately, careless usage easily reveals links between deposits and withdrawals and also

impact the anonymity of other users, since if a deposit can be linked to a withdraw, it can be

excluded from the anonymity set of other withdraws. The simplest careless usage is applying the

same address for deposit and withdrawal transactions as well:

Pattern 1. If there is an address from where a deposit and also a withdrawal has been made,

then we consider these deposits and withdrawals linked.

6.7.1 Ground truth data

Next, we de�ne two more patterns we use for de�ning ground truth data for our machine learning

methods that �nd linked pairs of accounts. Note that Pattern 1 �nds a deposit-withdraw pair

94

of the same address rather than an address pair. Hence, the anonymity guarantees are already

broken without the need of machine learning methods.

The next pattern consists of the use of a salient gas price, which can be used to de�ne linked

address pairs in a ground truth set to evaluate our machine learning methods. Most wallet

software, e.g. Metamask or My Ether Wallet automatically sets gas prices as multiples of Gwei

(109 wei, i.e. Giga wei). However, one can observe gas prices whose last 9 digits are non-zero,

hence those gas prices are likely set by the transaction issuer manually. These custom-set gas

prices can be used to link deposits and withdraw transactions. For instance, one might observe

the deposit transaction6 at block height 9, 418, 956 with 5.130909091 Gwei gas price. Later on,

there is a withdraw transaction7 at block height 9, 419, 096 with exactly the same custom-set gas

price.

Pattern 2. If there is a deposit-withdraw pair with unique gas prices, then we consider them as

linked.

In a third pattern, users reveal links between their deposit and withdraw addresses if they sent

transactions from one of their addresses to another address owned by them. We conjecture that

users falsely expect that withdraw addresses are clean. Therefore, they send transactions from

any address to their clean withdraw addresses. However, if the withdraw address can be linked

to one of their deposit addresses, then they e�ectively lose all privacy guarantee accomplished

by the fresh withdraw address. Express di�erently, if users run out of clean funds at their fresh

addresses, they might feel tempted to move �dirty� assets to their �clean� addresses. Again, such

a transaction links �clean� and �dirty� addresses as follows.

Pattern 3. Let d be a deposit and w a withdraw address in a TC mixer. If there is a transaction

between d and w (or vice versa), we consider the addresses linked.

We found 218, 110, 60, and 7 withdrawals linked by Patterns 1�3 in the four mixer contracts (0.1

ETH, 1 ETH, 10 ETH, 100 ETH), respectively, up to April 4th 2020, see Table 6.2. We note that

withdrawals identi�ed by Pattern 2 can overlap with other withdrawals identi�ed by Pattern 1

or 3. Hence the number of total linked withdrawals are less than the sum of all withdrawals

individually identi�ed by each pattern.

6Depositor: 0x074a3e9451fe3fb47be47786cf2dc4e84e797a6f
7Withdrawer: 0x0f2437�38e032596f2226873038230dcb22c485

95

Table 6.2: Number of all withdrawals and deanonymized withdrawals using the corresponding

patterns in each mixer contract.

Deanonymized withdrawals All

Mixer Pattern 1 Pattern 2 Pattern 3 Total withdrawals

0.1ETH 95 (7.5%) 80 (6.2%) 113 (8.8%) 218 (17.1%) 1272

1ETH 21 (2.5%) 40 (4.8%) 75 (9%) 110 (13.2%) 833

10ETH 8 (1.1%) 9 (1.2%) 46 (6.2%) 60 (8.1%) 738

100ETH 2 (1.5%) 5 (3.8%) 3 (2.3%) 7 (5.3%) 132

0 25 50 75
Days

0.0

0.5

1.0

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Fig. 6.12: Elapsed time in days between linked

deposit and withdraw transactions for the 0.1

ETH mixer contract. Vast majority of users do

not wait more than one day to withdraw their

deposits.

0 5 10
Withdraw address reuse

10
0

10
1

10
2

10
3

A
dd

re
ss

 C
ou

nt

833

83

27

8 9

3
2

3

1
2

Fig. 6.13: Withdrawal address reuse in the 0.1

ETH mixer contract. Many users withdraw

multiple deposits to the same address, which

eases deanonymization and reduces the privacy

properties of the mixer.

6.7.2 Elapsed time between deposits and withdrawals, withdraw address

reuse

In Figure 6.12, we observe that most users of the linked deposit-withdraw pairs leave their deposit

for less than a day in the mixer contract. This user behavior can be exploited for deanonymization

by assuming that the vast majority of the deposits are always withdrawn after one or two days.

Even worse, in Figure 6.13, we observe several addresses receiving multiple withdrawals from the

0.1 ETH mixer contract. For instance, there are 83 addresses that have withdrawn twice and 27

addresses with 3 withdrawals each. This phenomenon causes privacy risk not just for the owner

of these addresses but also reduces the privacy properties of the mixer. Proper usage always

requires a withdraw to a fresh address.

96

Table 6.3: Withdraw linking performance for the 0.1ETH mixer contract. Entropy gain and the

average rank of the deposit address in the candidate list of our algorithms are shown for the

three di�erent ground truth sets (past, week, day), cf. Section 6.7.3.

Evaluation metric: Average rank Entropy gain

Withdraw within: past week day past week day

Norm. gas price 168.784483 28.224719 5.861111 0.145438 0.134766 0.095546

Daily activity 116.146552 18.213483 3.444444 0.526595 0.570671 0.560121

Di�2Vec 89.222414 17.968539 4.268056 0.899869 0.743705 0.491611

Concatenated 64.012069 13.241573 3.362500 1.238389 1.151222 0.840526

Avg. anonymity set size 400.672414 70.247191 12.291667

6.7.3 Deanonymization performance

Next, we measure how well the techniques of Section 6.6 identify the linked withdraw-deposit

address pairs. We build ground truth by using careless Tornado usage Patterns 2�3. We de�ne

three di�erent ground truth sets, one when the deposit is within the past day of the withdraw,

another when within the past week, and the un�ltered full set. For example, for the 0.1 ETH

mixer contract, we found 100, 80 and 67 deposit-withdraw pairs for these ground truth sets,

respectively. Experiments on the un�ltered full set are labelled past in Figures 6.14-6.15 and

Table 6.3.

Note that in Pattern 2, we used gas prices. Hence, in this section, we include measurements

for gas price based linking performance only as reference. Similarly, Pattern 3 relies on an edge

(transaction) between the two addresses, hence we discard these edges (transactions) in the

network analysis algorithms. As we see, gas price distribution performs weakly for �nding the

account pairs, despite that Pattern 2 is based on gas price. On the other hand, adding the edges

between accounts identi�ed by Patterns 3 would yield misleadingly strong performance, since

the same information is used for de�ning the ground truth and for testing.

Table 6.3 shows that an address with withdraw within a day or week has a signi�cantly smaller

anonymity set size, on average, since we only search for the corresponding deposit in a smaller

set. In the 0.1ETH mixer, the original average anonymity set size of 400 can be reduced to almost

12 by assuming (e.g., an adversary might obtain this information by any means as background

knowledge) that the deposit occurred within one day of the withdraw.

97

1 2 3 4 5
Rank

0
10
20
30
40
50
60

Co
un

t

past

1 2 3 4 5
Rank

0
10
20
30
40
50
60

Co
un

t

1 week

1 2 3 4 5
Rank

0
10
20
30
40
50
60

Co
un

t

1 day

Norm. gas price Daily activity Diff2Vec Concatenated

Withdraw within:

Fig. 6.14: Number of withdraw addresses in the 0.1ETH mixer contract such that the corre-

sponding deposit is identi�ed within the given rank in the candidate list of each deanonymization

technique, separate for the three ground truth sets described in Section 6.7.3.

Daily activity and Di�2Vec perform much better in the TC withdraw linking task than gas price

based user pro�les. For the smaller week and day ground truth sets, they identify related deposit

addresses within the 20 and 5 closest representations on average. Withdraw linking performance

is further improved by concatenating the representations of daily activity and Di�2Vec. The

number of withdrawals linked to deposits within a given rank of the candidate list for di�erent

methods are in Figure 6.14. The concatenated model identi�es almost twice as many withdraw

deposit pairs than Di�2Vec for the un�ltered ground truth set.

In Figure 6.15, we show the withdraw linking performance over time. As the number of active

deposits increases, it becomes harder to link withdrawals to any of the past deposits. However

withdrawals that follow the deposit after a few days are still much easier to deanonymize.

6.8 Maintaining privacy

In this section, we propose countermeasures to mitigate the e�ect of the main privacy leaks.

First, we address problems related to non-custodial mixers, which is followed by a more general

discussion on user behavior re�ecting our results in Sections 6.6.5 and 6.7.3.

Randomized mixing intervals

Participants in mixer contracts greatly decrease anonymity if they withdraw funds after short

time intervals, cf. Figure 6.12 and Table 6.3. A possible workaround is the use of randomized

mixing intervals. Such a delay in withdrawal cannot be enforced by the mixing contract itself,

98

15
 D

ec

01
 Ja

n

15
 Ja

n

01
 F

eb

15
 F

eb

01
 M

ar

15
 M

ar

01
 A

pr

0
50

10
0

15
0

Cu
m

ul
at

iv
e

av
g.

 ra
nk

past

15
 D

ec

01
 Ja

n

15
 Ja

n

01
 F

eb

15
 F

eb

01
 M

ar

15
 M

ar

01
 A

pr

0
10

20
30

Cu
m

ul
at

iv
e

av
g.

 ra
nk

1 week

15
 D

ec

01
 Ja

n

15
 Ja

n

01
 F

eb

15
 F

eb

01
 M

ar

15
 M

ar

01
 A

pr

2
4

6
8

Cu
m

ul
at

iv
e

av
g.

 ra
nk

1 day

Norm. gas price Daily activity Diff2Vec Concatenated

Withdraw within:

Fig. 6.15: Change of average rank in time, cumulated from the beginning of our data (December

2019), for the 0.1 ETH Tornado mixer by using our best deanonymization methods. Results are

showed separately for the three ground truth sets described in Section 6.7.3.

since withdrawals cannot be linked to the deposits. Thus, delaying should be accomplished by

the user wallet software.

Fresh withdraw addresses

Currently, many users apply the same withdraw addresses across several withdrawals, see Fig-

ure 6.13. This greatly decreases the complexity of linking deposits and withdrawals. Therefore,

users must use fresh withdraw addresses for each of their withdrawals.

Mixer usage and user behaviors

Mixers mainly attempt to break the link between accounts associated with the same entity.

As such, users need to ensure that their on-chain behaviors are unlinkable between uses of the

TC mixers. Therefore, to ensure maximal privacy, users should use the TC mixers after every

transaction. However, this decreases the user experience and ability to use applications on

Ethereum.

Making deposits and withdrawals always during the same time of the day can also decrease the

anonymity set for an account. An option in the user wallet software to schedule transactions for

the future with random time delay could easily hide the time zone for the given entity.

Unfortunately, fooling complex graph representation learning algorithms is harder and requires

constant monitoring of the whole Ethereum transaction graph, which the users themselves will

99

unlikely be able to perform. For example, fooling Di�2Vec representations can require carefully

chosen transactions to other address clusters. Similarly, several transactions are needed to change

the motif pro�le to mislead Role2Vec. Companies or other large entities could probably act to

obfuscate the network structure, but eventually, the end users will have to pay the price for the

additional transactions. Finally, we note that using payments with negligibly small amounts to

arti�cially link unrelated addresses are insu�cient for obfuscation, as such transactions can be

easily ignored in a privacy attack.

6.9 Conclusion

In this chapter, we studied how graph representation learning, time-of-day activity and gas price

pro�le can be used to link Ethereum addresses owned by the same user. The Ethereum Name

Service (ENS) relations in our data set provided ground truth information to quantitatively

compare and analyze the performance of these quasi-identi�ers. Our results showed that recent

node embedding methods had superior performance compared to user activity based pro�ling

techniques.

Our most interesting �nding is that user activity for account-based cryptocurrency networks

needs to be extremely well planned, otherwise the analysis of the transaction graph can easily

reveal the account owner. Through the combination of Di�2Vec and Role2Vec, two recent node

embedding models, we showed that di�erent addresses of the same entity are usually in the same

cluster or community performing similar roles.

As an application, we applied these pro�ling techniques on recently deployed privacy-enhancing

overlays, such as Tornado Cash (TC) mixers. By our measurements, their decreased usability and

immature user behavior prevent them from reaching their highest attainable privacy guarantees.

Evaluation on di�erent ground truth sets compiled from careless usage patterns of the TC mixer

showed that pro�ling techniques, especially novel node embedding algorithms, can signi�cantly

reduce the anonymity set sizes of the mixing parties.

We release the collected data as well as our source code to facilitate further research8.

8https://github.com/ferencberes/ethereum-privacy

100

https://github.com/ferencberes/ethereum-privacy

Chapter 7

Cryptoeconomic tra�c analysis of

Bitcoin's Lightning network

Bitcoin is a peer-to-peer, decentralized cryptographic currency [101]. It is a censorship-resistant,

permissionless, digital payment system. Anyone can join and leave the network whenever they

would like to. Participants can issue payments, which are inserted into a distributed, replicated

ledger called blockchain. Since there is no trusted central party to issue money and guard this

�nancial system, payment validity is checked by all network participants. The necessity of full

validation severely limits the scalability of decentralized cryptocurrencies: Bitcoin could theoret-

ically process 27 transactions per second (tps) [51]; however, in practice its average transaction

throughput is 7 tps [41]. This is in stark contrast with the throughput of mainstream payment

providers; for example, in peak hours Visa is able to achieve 47,000 tps on its network [147].

To alleviate scalability issues, the cryptocurrency community is continuously inventing new proto-

cols and technologies. A major line of research is focused on amending existing currencies without

modifying the consensus layer by introducing a new layer, i.e., o�-chain transactions [45,89,95].

These proposals are called Layer-2 protocols: they allow parties to exchange transactions locally,

without broadcasting them to the blockchain network, updating a local balance sheet instead

and only utilizing the blockchain as a recourse for disputes. For an exhaustive review of o�-chain

protocols, refer to [59].

Among these proposals, the most prominent ones are payment channel networks (PCN), in

which nodes have several open payment channels, being able to connect to all nodes, possibly

101

through multiple hops. The most popular instantiation of a PCN is Bitcoin's Lightning Net-

work (LN) [122], a public, permissionless PCN, which allows anyone to issue Bitcoin transactions

without the need to wait for several blocks for payment con�rmation and currently with trans-

action fees orders of magnitude lower than on-chain fees. LN is suitable for several application

scenarios, for instance, micropayments or e-commerce, with the intent to make everyday Bitcoin

usage more convenient and frictionless. LN's core value proposition is that Bitcoin users can send

low-value payments instantly in a privacy-preserving manner with negligible fees, which has led

to quite a widespread adoption of LN among Bitcoin users.

The main di�culty with analyzing how LN operates is that the exact transaction routes are

cryptographically hidden from eavesdroppers due to onion routing [71]. LN can only be observed

through public information on nodes and channel openings, closings, and capacity changes. The

actual amount of Bitcoins circulated in LN is unknown, although in blog posts, some node

owners publish high-level statistics, such as their revenue [22,84], which can be used as grounds

for estimation.

7.1 Our results

To analyze LN e�ciency and pro�tability, we designed a tra�c simulator for LN to analyze the

routing costs and potential revenue at di�erent nodes. We assigned roles to nodes by collecting

external data1, labeling nodes as wallet services, shops, and other merchants. Using node labels,

we simulated the �ow of Bitcoin transactions from ordinary users towards merchants over time,

based on the natural assumption that transactions are routed through the path that charges the

minimum total transaction fee. By taking the dynamically changing transaction fees of the LN

nodes into account, we designed a method to predict the optimal fee pricing policy for individual

nodes in case of the cheapest path routing.

To the best of our knowledge, there has been no previous empirical study on LN transaction

fees. Our tra�c simulator hence opens the possibility for addressing questions of transaction

routes, amounts, fees, and other measures otherwise depending upon strictly private information,

based solely on the observable network structure. By releasing the source code of our tool2, we

allow node owners to �t various parameters to their private observation on LN tra�c.

1Source: https://1ml.com
2See: https://github.com/ferencberes/LNTra�cSimulator

102

https://1ml.com
https://github.com/ferencberes/LNTrafficSimulator

In particular, in this work the simulator enables us to draw two major conclusions:

Economic incentives. Currently, LN provides little to no �nancial incentive for payment rout-

ing. Low routing fees do not su�ciently compensate the routing nodes that essentially hold

the network together. Our results show that in general, transaction fees are underpriced,

since for many possible payments there is no alternative path to execute the transaction.

We also give estimates of how the current network and fee structure responds to increase

in tra�c and decrease in channel capacities, thus assessing the income potential in di�er-

ent strategies. We provide an open source tool for nodes to experimentally design their

channels, capacities, and fees by incorporating all possible information that they privately

infer from the tra�c over their channels.

Privacy. We quantitatively analyze the privacy provisions of LN. Despite onion routing, we

observe that strong statistical evidence can be gathered about the sender and receiver

of LN payments, since a substantial portion of payments involve only a single routing

intermediary, who can easily de-anonymize participants. We �nd that using deliberately

suboptimal, longer routing paths can potentially restore privacy while only marginally

increasing the cost of an average transaction, as it is partially already incorporated in

other implementations of the Lightning protocol [58].

7.2 Background

7.2.1 Payment channel networks

A payment channel allows users to make multiple cryptocurrency transactions without com-

mitting all of the transactions to the blockchain. In a typical payment channel, only two trans-

actions are added to the blockchain, but theoretically, an unlimited number of payments can

be made between the participants. Parties can open a payment channel by escrowing funds on

the blockchain for subsequent use only between those two parties. The sum of the individual

balances on the two sides of the channel is usually referred to as the capacity.

We illustrate the operation of a payment channel by an example. Let Alice and Bob escrow 1 and

2 tokens respectively, by committing a transaction to the blockchain that sets up a new channel.

Once the channel is �nalized, Alice and Bob can send escrowed funds back and forth by revoking

the previous state of the channel and digitally signing the new state updated by the transacted

tokens. For example, Alice can send 0.1 of her 1 token to Bob, so that the new channel state is

103

(Alice=0.9, Bob=2.1). Once the parties decide to close the channel, they can commit its �nal

state through another blockchain transaction.

Maintaining a payment channel has an opportunity cost since users must lock up their funds

while the channel is open, and funds are not redeemable until the channel is closed. Hence, it is

not practical to expect users to maintain a channel with every individual with whom they may

ever need to transact.

In a payment channel network (PCN), nodes have several open payment channels between

each other; however, not necessarily with all other nodes. The network of bidirectional payment

channels allows two parties to exchange funds even if they do not have a direct payment channel.

For example, if Alice has a balance of 1 token with Ingrid, and Ingrid has a balance of 2 tokens

with Bob locked in a payment channel, then Alice can route payments to Bob through Ingrid

up to the maximum of the balances of Alice and Ingrid. Assuming that Alice sends 0.2 tokens

to Bob, after routing we have the following channel balances: Alice=0.8, Ingrid=0.2 on the �rst

channel and Ingrid=1.8, Bob=0.2 on the second channel.

In a payment channel, cryptographic protections are used to ensure that channel updates in both

directions are executed atomically, i.e., either both or neither of them are performed [59]. In

addition, incentive-based protections are also implemented to prevent users from stealing funds

in a channel, e.g., by committing a revoked state. Similar techniques allow payment routing

for longer paths. Furthermore, payment router intermediaries are �nancially motivated to relay

payments as they are entitled to claim transaction fees after each successfully routed payment.

LN as a PCN consists of nodes representing users and undirected, weighted edges representing

payment channels. Users can open and close bidirectional payment channels between each other

and route payments through these connections. Therefore, LN can be modeled as an undirected,

weighted multigraph since nodes can have multiple channels between each other. The weights

on the edges correspond to the capacity of the payment channels.

In LN only capacities of payment channels are known publicly, individual balances are kept

secret. This is because if individual balances are known, balance updates would reveal successful

transactions, hence preventing transaction privacy.

104

7.2.2 Routing in LN and Fee Mechanism

LN applies source routing, meaning that it is always the sender who decides the payment route

towards the intended recipient. Packets are onion routed, which means that intermediary nodes

only know the identity of their immediate predecessor and successor in the route. Therefore,

from a privacy perspective, nodes are incentivized to avoid single-intermediary paths, as in those

cases intermediaries are potentially able to identify both the sender and the receiver.

LN provides �nancial incentives for intermediaries to route payments. In LN there are two types

of fees that a sender pays to the intermediaries in case the transaction involves more than one

payment channels. Nodes can set and charge the following fees after each routed payments:

Base fee: a �xed fee denoted as baseFee, charged each time a payment is routed through the

channel.

Fee rate: a percentage fee denoted as feeRate, charged on the value txValue of the payment.

Therefore, the total transaction fee txFee to an intermediary can be obtained as:

txFee = baseFee + feeRate · txValue. (7.1)

We note that the base fee and fee rate is set by individual users, thus forming a fee market

for payment routing. Furthermore, we remark that Equation 7.1 does not hold for all routing

algorithms. However, we do not consider other fee structures in our simulator, as currently

alternative routing algorithms are not widely adopted throughout the network.

7.3 Review of related work

To the best of our knowledge, we have conducted the �rst empirical analysis on LN transac-

tion fees, similar to the way empirical and theoretical studies on on-chain transaction fees have

been conducted during the early adoption of cryptocurrencies. Möser and Böhme conducted a

longitudinal study on Bitcoin's nascent transaction fee market [98]. Kaskaloglu asserted that

near-zero transaction fees cannot last long as block rewards diminish [70]. Easley et al. devel-

oped a game-theoretic model to explain the factors leading to the emergence of transactions fees,

and provided empirical evidence on the model predictions [46]. Recently, BitMEX, a single LN

node, has experimented with setting di�erent transaction fees to measure the e�ect on routing

revenue [22], which shows a similar pattern to our simulation experiments.

105

Unlike on-chain transactions, the LN transaction fee market is not yet consolidated. Some actors

behave �nancially rationally, while the vast majority exhibit altruistic behavior, which parallels

the early days of Bitcoin [98]. Similarly to on-chain fees, we expect to see more maturity and a

similar evolution in the LN transaction fee market in the future.

Even before the launch of LN, many works studied the theoretical aspects of PCNs. Branzei et

al. studied the impact of LN on Bitcoin transaction costs [26]. They conjectured a lower miner

income from on-chain transaction fees as users tend to use and issue transactions on LN. In [74],

the transaction fees of various payment channels are compared, however, without reference to

the underlying network dynamics.

Depleted payment channels account for many e�ciency issues in PCNs. Khalil and Gervais

devised a handy algorithm to revive imbalanced payment channels without opening new ones [73].

PCNs can also be considered to be creation games. A user might decide to create a payment

channel to a destination node or just route the payment in the already existing PCN. The former

is more expensive; however, repeated payments can amortize the on-chain cost of opening a

payment channel. Avarikioti et al. found that given a free routing fee policy, the star graph

constitutes a Nash equilibrium [8]. In a similar game-theoretic work, the e�ect of routing fees

was analyzed [7]. It was again found that the star graph is a near-optimal solution to the network

design problem.

Even though transactions in LN are not recorded on the blockchain, they do not provide privacy

guarantees. As early as 2016, Herrera et al. anticipated the privacy issues emerging in a PCN [64].

Single-intermediary payments do not provide privacy, although they have higher utility. Tang et

al. asserts that a PCN either operates in a low-privacy or a low-utility regime [144]. Although

a recently devised cryptographic protocol solves the privacy issues of single-intermediary routed

payments [139], the protocol is not yet in use due to its complexity of implementation.

After the launch of LN, several studies have investigated the graph properties of LN [88,126,134].

They described the topology of LN at an arbitrarily chosen point in time and found that LN

exhibits a hub and spoke topology, and its degree distribution can be well approximated with

a scale-free distribution [126, 134]. Furthermore, these works assessed the robustness of the

network against various types of attack strategies: they showed that LN is susceptible to both

node [88, 134] and channel [126] removal based attacks. These works are restricted to a static

snapshot of LN. The lack of temporal data has largely limited the insights and results of these

106

contributions.

In a Youtube video [121], an estimate of the routing income is given based on the assumption

that the payment probability between any node pair is the same. As it is easy to see, under

this assumption the routing income of a node is proportional to its betweenness centrality. In

our simulation experiments, we will explicitly compare our prediction with the one based on

betweenness centrality and show how the �ner structure of our estimation procedure yields more

plausible results.

At the time of writing, four research groups published results on payment channel network

simulators, each serving purposes very di�erent from ours. Out of them, the simulator of Branzei

et al. [26] is the only one that has pointers to publicly available resources. Their simulator

only considers single bidirectional channels or a star topology, and its main goal is to analyze

channel opening costs and depletion. This simulator is extended in [47] to generate and analyze

Barabási-Albert graphs as underlying networks. CLoTH [40] is able to provide performance

statistics (e.g., probability of payment failure on a given PCN graph); however, it does not analyze

transaction fees, pro�tability, optimal fee policy, and privacy provisions of LN. In contrast, our

LN tra�c simulator can produce insights in those areas as well. Finally, the simulator in [161] is

a distributed method to minimize the transaction fee of a payment path, subject to the timeliness

and feasibility constraints for the success ratio and the average accepted value of the transactions.

7.4 Data collection

Throughout our work, we analyze two main data sources that are both available online3. Orig-

inally, these data sets contained only structural information related to LN that we augmented

with node labels. Relying on the tags provided by the node owners4, we distinguish between

ordinary users and merchants. Merchants are assumed to receive payments more often than

regular users. This is essential in understanding how popular payment channels are depleted

throughout LN by repeated use in one direction.

We note that according to some estimates, 28% of all channels are private [125], meaning that

their existence can only be recognized by the two ends. In our analysis, we have no information

about private payment channels; however, the same holds for all the other network participants

3See: https://github.com/ferencberes/LNTra�cSimulator
4Source: https://1ml.com

107

https://github.com/ferencberes/LNTrafficSimulator
https://1ml.com

2018-01
2018-03

2018-05
2018-07

2018-09
2018-11

2019-01
2019-03

2019-05

0

10000

20000

30000

40000

N
um

be
r o

f n
od

es
 o

r e
dg

es

Nodes
Edges
Capacity

0

200

400

600

800

1000

B
TC

Fig. 7.1: LN's increasing popularity and

adoption in its �rst 17 months.

2018-01
2018-03

2018-05
2018-07

2018-09
2018-11

2019-01
2019-03

2019-05

1

2

3

4

5

6

7

8
Average Degree
Effective Diameter

Fig. 7.2: Average degree and e�ective diam-

eter in LN, as the function of time.

as well. Hence, we do not expect a signi�cant bias in our results, as presumably those channels

have private use and do not participate in carrying the global network tra�c.

7.4.1 Dynamics of LN

Our �rst source is an edge stream data that we received from Antoine Le Calvez (Coin Metrics).

It describes every payment channel opening and closure from block height 501,337 (in December

28, 2017) to 576,140 (in May 15, 2019). In this subsection, we summarize the main observations

on the dynamics of LN that helped us to lay down the fundamental design choices for the LN

tra�c simulator that we describe in Section 7.5.

Ever since LN was launched, its popularity has grown steadily (Figure 7.1). This growth in

popularity has caused the average degree increasing and the diameter decreasing over time, a

�densi�cation� phenomenon observed for a wide class of general networks in [81]. The average

degree steadily increases, while the e�ective diameter decreases only after a �rst initial expansion

phase (Figure 7.2).

LN payment channels adjacent to merchants have a shorter average lifetime (5198 blocks) than

the average channel lifetime (5474 blocks), see the di�erence of the full distribution in Figure 7.4.

We suspect that subsequent payments deplete the channels of the merchants, who then close these

channels, collect their funds, and open new channels.

108

1 2 3 4 5 6 7
Distance

102

105

Nu
m

be
r o

f e
dg

es

11493 10285

87308

17090

744

36

2
1

2259 2762

22511

3394

62

7

All
Merchants

Fig. 7.3: The distance of LN nodes in the

network at the time before a payment chan-

nel is established between them. ∞ denotes

the case when they were in di�erent con-

nected components.

0 10000 20000 30000
Channel lifetime (blocks)

10
6

10
5

10
4

P
ro

ba
bi

lit
y All

Merchant

Fig. 7.4: Channel lifetime distribution of

merchants and others (merchant average:

5198; overall average: 5474).

2018-01
2018-03

2018-05
2018-07

2018-09
2018-11

2019-01
2019-03

2019-05

0.0

0.2

0.4

0.6

0.8

1.0

C
en

tra
l P

oi
nt

 D
om

in
an

ce

LN
ER
BA

Fig. 7.5: Central Point Dominance of LN

as the function of time, compared to that

of an Erd®s-Rényi (ER) and a Barabási-

Albert (BA) graph of equal size at the given

time.

2018-01
2018-03

2018-05
2018-07

2018-09
2018-11

2019-01
2019-03

2019-05

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Tr
an

si
tiv

ity

LN
ER
BA

Fig. 7.6: Transitivity of LN, compared

to that of an Erd®s-Rényi (ER) and a

Barabási-Albert (BA) graph of equal size

at the given time.

109

We observe strong central point dominance in LN (Figure 7.5), which indicates that LN is more

centralized than a Barabási-Albert or an Erd®s-Rényi graph of equal size. This is in line with

the predictions of [7, 8], a�rming that PCNs lean to form a star graph like topology to achieve

Nash equilibrium.

Counterintuitively, LN also exhibits high transitivity, also known as global clustering coe�cient,

see Figure 7.6. One would expect that nodes have no incentive to close triangles, as they might

as well just route payments along already existing payment channels. However, we observe that

the vast majority (68.76%) of all created payment channels connect nodes only 1 hop (distance

2) away from each other, see Figure 7.3. We believe that in most cases this is caused by replacing

depleted payment channels. The high transitivity in LN is especially striking when it is compared

to other social graphs. LN has roughly the same clustering coe�cient as the YouTube social

network [96].

7.4.2 LN snapshots with routing fees

We also collected snapshots of the public graph using the lnd client and utilized snapshots taken

by Rohrer et al [126] as well.

In this section, we describe the graphs de�ned based on the 40 consecutive LN graph snapshots

in our data set that span from 2019 February and March. The number of merchant nodes in

the union of these snapshots is 169. We consider a minimum meaningful capacity α = 60 000

SAT (approximately USD 5 in 2019, at the time of writing our paper) and exclude edges with

capacity less than α in G as they cannot be used in payments with value α.5 Although LN

channels are bidirectional, in our experiments we consider two directed edges, so that we can

use channels in one direction if the capacity is exhausted in the other direction. We also ignore

edges in the direction where they are �agged as disabled in the data. The properties of the LN

network, averaged over the 40 daily snapshots, is as follows:

� Number of the union of all nodes: 4 787;

� Average number of nodes in a day: 3 358;

5Note that at the time of writing our paper, atomic multipath payments (AMPs) are not implemented. AMPs

would allow one to split a payment value into multiple smaller amounts and subsequently send those payments

to the receiver via multiple payment paths through di�erent intermediaries. The AMP protocol will guarantee

that either all sub-payments are executed or none of them.

110

� Non-isolated nodes after �ltering disabled edge directions and edges with capacity less than

60 000 SAT: 3 132;

� Size of the largest strongly connected component: 2 206;

We highlight that it is only our snapshot data set that contains transaction fee information

essential to simulate LN payments. Thus, the experiments in Sections 7.5-7.8 are based on the

40 consecutive LN graph snapshots only.

7.5 Lightning Network Tra�c Simulator

In this section, we introduce our main contribution, the LN Tra�c Simulator, which we designed

for daily routing income and tra�c estimation of network entities. Simulation is necessary to

analyze the �ne-grained structure, since the key concept of LN is privacy: data will never include

transaction amounts, sources, and targets in any form, and it is very unlikely that it will give

information on the capacity distribution over the channels, since that would leak information on

the actual transactions. Hence we need a simulator to understand the capabilities and limitations

of the network to route transactions.

By simulating transactions at di�erent tra�c volumes and transaction amounts, we shed light

on the fee pricing policies of major router entities as well as on privacy considerations, as we will

describe in Sections 7.6�7.8.

In our simulator, we make the assumption that the sender nodes always choose the cheapest

route to execute their transactions. Due to the source routing nature of LN, nodes are expected

to possess the knowledge of network structure and current transaction fees to make price optimal

decisions. Note that in the LN client6, the source node selects the routing for their transactions.

For example, the sender node may choose the shortest instead of the cheapest path to the

target if speed is more important than the transaction cost, and our simulator can be modi�ed

accordingly.

The main goal of our tra�c simulator is to generate a certain number of transactions, given

as an input parameter, by using only the information on the edges and their capacities in a

given LN snapshot. To generate transaction sources and targets, we prede�ne the fraction of the

transactions that lead to merchants based on the assumption that the majority of the transactions

6See https://github.com/lightningnetwork/lnd and https://github.com/ElementsProject/lightning.

111

https://github.com/lightningnetwork/lnd
https://github.com/ElementsProject/lightning

correspond to money spent at shops and service providers. We �x the amount as constant to

reduce the complexity of the simulation model.

We acknowledge that using constant payment amounts is a strong assumption. One could con-

sider various distributions such as Pareto, power law, Poisson, as in previous works [144]. How-

ever, assumptions on the distributions as well as their parameter settings greatly increase the

complexity of the experimentation, and cannot be empirically validated, since payment values

are not public. We found the necessity to incorporate correlations of the amounts with node

sizes and roles particularly troublesome. We note that constant amounts are also capable of cap-

turing larger values by repeated payments from the same node. Finally, any time some entities

obtain reliable estimates on the payment value distribution, they can conduct the corresponding

experiments with our open source simulator.

Formally, we use the following notation:

� G, a daily graph snapshot of the LN with channels represented by pairs of edges in both

directions; disabled directions and too low capacity edges are excluded;

� M , the set of merchant nodes de�ned in Section 7.4;

� τ , the number of random transactions to sample;

� α, the (constant) value of each transaction, in satoshis7;

� ε, the ratio of merchants in the endpoints of the random transactions.

The available data only includes the total channel capacity but not its distribution between the

endpoints. Thus, before simulation we randomly initialize the capacity between the channel

endpoints. For example, if Γ is the total capacity of the channel between nodes u and v, we let

0 ≤ γ(uv) ≤ Γ and 0 ≤ γ(vu) ≤ Γ denote the maximum value in satoshis, which can be routed

from u to v and vice versa. Both γ(uv) and γ(vu) change after each transaction that uses this

channel while maintaining γ(uv) + γ(vu) = Γ at all times.

If an edge has capacity less than α in a direction, that is γ(uv) < α, the edge direction uv is

depleted. In the simulation, a depleted edge uv cannot be used before a payment is made in

the opposite direction vu, in which case γ(uv) ≥ α will hold. Optionally, in Section 7.7, we

7Each Bitcoin (BTC) is divisible to the 8th decimal place, so each BTC can be split into 100,000,000 units.

Each unit of Bitcoin, or 0.00000001 Bitcoin, is called a Satoshi. A satoshi is the smallest unit of Bitcoin, see

https://satoshitobitcoin.co/.

112

https://satoshitobitcoin.co/

will also investigate the e�ect of removing this constraint and allow the simulation to use an

edge direction without limits. We also note that routers can balance payment channels without

closing and reopening existing ones by �nding cycles containing a depleted channel and route

funds on a circular payment path [73], however, this option is not implemented in the current

version of our simulator.

We start the simulation by �rst sampling τ transactions, each of amount α. First we select τ

senders uniformly at random from all nodes. Recipients are selected by putting emphasis on

merchantsM : we choose ε ·τ merchants with probability proportional to their degree in addition

to (1 − ε) · τ recipients that are selected uniformly at random from all nodes including both

merchants and non-merchants. Finally, we randomly match senders and recipients.

Given the transactions, we are ready to simulate tra�c by �nding the cheapest paths P = (s =

u0, u1, u2, . . . , uk = t) from sender s to recipient t with the capacity constraint γ(uiui+1) ≥ α

for i = 0 . . . k − 1. Then, node statistics (e.g., routing income, number of routed transactions)

are updated for each intermediary node {u1, u2, . . . , uk−1} with respect to the latest transaction.

Finally, for i = 0 . . . k− 1 the value of γ(uiui+1) is decreased while γ(ui+1ui) is increased by the

transaction amount α in order to keep available node capacities up to date. As we work with

daily graph snapshots, the simulation mimics the daily tra�c on LN.

The simulated routing income of a node will arise as the sum of the payment costs of its inbound

channels. The cost of a payment can be obtained by substituting txValue = α in the transaction

fee Equation (7.1), we obtain the transaction fee of an edge as baseFee + feeRate · α. We note

that in this work we give no estimate on the cost of opening the channels, instead, we stop

using depleted edges as long as a payment in the opposite direction reactivates them. We will

assess the e�ect of channel depletion on routing income in Section 7.7, where we will allow the

simulation to use an edge direction without capacity limits.

Due to several random factors in the simulation, including source and target sampling and

capacity distribution initialization, we run the tra�c simulator ten times. We use 40 consecutive

daily snapshots in our data. We always report the mean node statistics (e.g., node routing

income, daily tra�c) of LN entities over our sets of 400 simulations for each parameter setting.

113

1000 3000 5000 7000 9000

2000
4000
6000
8000

10000
12000

in
co

m
e

(s
at

os
hi

)

1000 3000 5000 7000 9000

100

200

300

400

500

600

ro
ut

ed
 p

ay
m

en
ts

= 60000, = 0.8

20000 40000 60000 80000 100000
 (satoshi)

2500

5000

7500

10000

12500

in
co

m
e

(s
at

os
hi

)

20000 40000 60000 80000 100000
 (satoshi)

200

250

300

350

ro
ut

ed
 p

ay
m

en
ts

= 5000, = 0.8

0.0 0.2 0.4 0.6 0.8 1.0
5000

6000

7000

8000

9000

10000

in
co

m
e

(s
at

os
hi

)

0.0 0.2 0.4 0.6 0.8 1.0
200

300

400

500

600

ro
ut

ed
 p

ay
m

en
ts

= 60000, = 5000

Fig. 7.7: Mean estimated routing income and number of routed payments of LNBIG.com entity

with respect to tra�c simulator parameters. The default parameter setting (daily transaction

count τ = 5000, single transaction amount α = 60, 000 satoshis, and merchant endpoint ratio

ε = 0.8) is marked by vertical black dotted lines. The daily income and tra�c ranges stated by

LNBIG.com [84] are marked by horizontal red dashed lines.

7.5.1 Feasibility Validation and Choice of Parameters

We validate our simulation model by comparing published information with our estimates for

the income and tra�c of the most relevant LN router entities. These nodes are responsible

for keeping the network operational by routing most of the transactions. Our key source of

information is the blog post [84] on LNBIG.com, the most relevant routing entity who owns

several nodes on LN as well as approximately half of the total network capacity:

� In a typical day, LNBIG.com serves 200�300 transactions through all of its nodes, rarely

exceeding 600 in a single day.

114

� On routing commissions, LNBIG.com earns 5, 000�10, 000 satoshis per day.

We managed to reproduce daily tra�c and routing income similar to LNBIG.com by sampling

τ = 5, 000 transactions with α = 60, 000 satoshis (approximately 5 U.S. dollars) and merchant

ratio ε = 0.8. The estimated revenue, as the function of the parameters, is shown in Figure 7.7,

also showing the target daily income and tra�c ranges stated by LNBIG.com [84].

To summarize, simulating a few thousand micro-payments with mostly merchant recipients re-

sulted in similar tra�c and revenue as described over the nodes of LNBIG.com. We choose

τ = 5, 000, α = 60, 000, and ε = 0.8 as default parameters of our tra�c simulator in order to

draw some conclusions on LN node pro�tability and transaction privacy in Sections 7.6�7.8.

7.5.2 Tra�c Simulator Response to Parameter Changes

Next, we examine the stability of our tra�c simulator for di�erent ratios of merchant endpoints ε.

We note that the set of transaction recipients can be sampled uniformly at random by choosing

ε = 0.0, while in case ε = 1.0, every sampled transaction has merchant endpoints. Thus,

by increasing the value of ε the tra�c can be centralized towards LN service providers. As

determined in the previous subsection, we set the remaining parameters τ = 5, 000 and α =

60, 000.

Our goal is to observe stable tra�c characteristics throughout a sequence of days, measured as

the correlation of node statistics across days. Towards this end, we measure the following node

level summaries of the simulated tra�c every day:

� Routing tra�c: the number of transactions that are forwarded by a given node;

� Routing income: the sum of all transaction fees that a given node charges for payment

routing;

� Sender tra�c: the number of transactions that are initiated by a given node;

� Sender fee: the sum of all transaction fees that a given node has to pay for his transactions

to be forwarded by intermediary nodes.

In Figure 7.8, the Spearman, Kendall, unweighted and weighted Kendall-tau correlations of

routing tra�c and income are shown for ε = 0.0, 0.2, 0.5, 0.8, and 1.0. For the de�nitions,

see [150].

115

0.0 0.2 0.5 0.8 1.0

0.
0

0.
2

0.
5

0.
8

1.
0

1.00 0.99 0.99 0.97 0.94

0.99 1.00 0.99 0.98 0.94

0.99 0.99 1.00 0.98 0.96

0.97 0.98 0.98 1.00 0.98

0.94 0.94 0.96 0.98 1.00

Spearman

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.0 0.2 0.5 0.8 1.0

0.
0

0.
2

0.
5

0.
8

1.
0

1.00 0.94 0.91 0.87 0.82

0.94 1.00 0.92 0.89 0.83

0.91 0.92 1.00 0.91 0.86

0.87 0.89 0.91 1.00 0.90

0.82 0.83 0.86 0.90 1.00

Kendall

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.0 0.2 0.5 0.8 1.0

0.
0

0.
2

0.
5

0.
8

1.
0

1.00 0.99 0.98 0.96 0.94

0.99 1.00 0.98 0.97 0.95

0.98 0.98 1.00 0.98 0.96

0.96 0.97 0.98 1.00 0.98

0.94 0.95 0.96 0.98 1.00

Weighted Kendall

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(a) Correlation of routing tra�c for ε ∈ {0.0, 0.2, 0.5, 0.8, 1.0}.

0.0 0.2 0.5 0.8 1.0

0.
0

0.
2

0.
5

0.
8

1.
0

1.00 0.99 0.98 0.97 0.93

0.99 1.00 0.98 0.97 0.94

0.98 0.98 1.00 0.98 0.95

0.97 0.97 0.98 1.00 0.97

0.93 0.94 0.95 0.97 1.00

Spearman

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.0 0.2 0.5 0.8 1.0

0.
0

0.
2

0.
5

0.
8

1.
0

1.00 0.93 0.91 0.86 0.81

0.93 1.00 0.92 0.88 0.82

0.91 0.92 1.00 0.90 0.86

0.86 0.88 0.90 1.00 0.89

0.81 0.82 0.86 0.89 1.00

Kendall

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.0 0.2 0.5 0.8 1.0

0.
0

0.
2

0.
5

0.
8

1.
0

1.00 0.98 0.98 0.92 0.93

0.98 1.00 0.98 0.89 0.94

0.98 0.98 1.00 0.90 0.95

0.92 0.89 0.90 1.00 0.89

0.93 0.94 0.95 0.89 1.00

Weighted Kendall

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(b) Correlation of routing income for ε ∈ {0.0, 0.2, 0.5, 0.8, 1.0}.

Fig. 7.8: Correlation of simulated daily node routing tra�c (top three) and income (bottom

three) with respect to di�erent ratio of merchants among transaction endpoints ε.

We observe high weighted Kendall-tau correlation, which means that the set of nodes with the

highest routing income and tra�c are very similar regardless of the ratio of merchants ε among

transaction recipients.

By contrast, we observe low values of (unweighted) Kendall-tau. Since the set of nodes is

dominated by low-tra�c ones, the Kendall-tau value also depends mostly on the simulated tra�c

amount of these nodes. Hence, low Kendall-tau implies that nodes with low tra�c and income

�uctuate as transaction endpoints are selected at random. Most of these nodes have probably

no tra�c when transactions are centralized towards service providers (ε = 1.0).

In Figure 7.9, we assess the stability of the simulation by showing the mean correlation of four

di�erent node statistics over 10 independent simulations for each snapshot. Two of the statistics,

routing income and routing tra�c, show high correlation for all values of ε, which means that

nodes with high daily routing income and tra�c are stable across independent experiments. By

116

Spearman Kendall Weighted Kendall0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

va
lu

e

=0.0

Spearman Kendall Weighted Kendall0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

va
lu

e

=0.5

Spearman Kendall Weighted Kendall
correlation type

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

va
lu

e

=0.8

Spearman Kendall Weighted Kendall
correlation type

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

va
lu

e

=1.0

routing income routing traffic sender fee sender traffic

Fig. 7.9: Mean Spearman, unweighted and weighted Kendall-tau cross correlation of node statis-

tics over the 10 independent simulations with respect to the ratio of merchants as transaction

endpoints (ε ∈ {0.0, 0.5, 0.8, 1.0}).

contrast, sender transaction fees and sender tra�c especially vary highly, which is a natural

consequence of uniform random sampling for source selection. By our measurements, ratio ε

only a�ects the sender transaction fee. By increasing the value of ε, more and more transactions

are centralized towards merchants. Thus, sender nodes pay the transaction fees to more or less

the same set of intermediary nodes, which results in higher sender transaction fee correlations.

Finally, we compare our simulated routing income with simple estimates based on the properties

of the nodes in LN as a graph. In a Youtube video, Pickhardt [121] shows the routing income

of a node is proportional to its betweenness centrality in case the payment probability between

any node pair is the same. In Figure 7.10, we observe that our simulated routing income with

parameters α = 60, 000, τ = 5000, ε ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} is well correlated with the

betweenness centrality of a node. However, the Spearman correlation decreases with larger

ε, which means that since payment endpoints are biased towards merchants, we need a more

accurate estimation method. In Figure 7.11, we show two more node statistics, degree and total

node capacity, both correlating much weaker to our prediction than betweenness centrality.

In summary, the set of nodes with high routing income and tra�c are consistent across inde-

pendent simulations regardless of the ratio of merchants among sampled transaction endpoints,

117

0.0 0.2 0.4 0.6 0.8 1.0

0.82

0.84

0.86

0.88

sp
ea

rm
an

 c
or

re
la

tio
n

income traffic

Fig. 7.10: Spearman correlation of pre-

dicted daily routing income (or tra�c)

and Betweeness centrality of LN nodes.

The correlation decreases in case of high

simulated merchant ratio ε.

0.0 0.2 0.4 0.6 0.8 1.00.6

0.7

0.8

0.9

sp
ea

rm
an

 c
or

re
la

tio
n betweeness

degree
total_capacity

Fig. 7.11: Spearman correlation of predicted daily

routing income and graph centrality measures with

regard to the merchant ratio ε among payment end-

points.

while randomization naturally has a big in�uence on the low tra�c end of the network. The low

tra�c end can be estimated by incorporating the role of a node in the simulation, as we do in a

very simple way by controlling tra�c towards merchants with the parameter ε.

7.6 Transaction Fee Competition

Our �rst analysis addresses the observed and potential pro�tability of LN, which is questioned

in several blog posts [22, 84]. A core value proposition of LN is that Bitcoin users can execute

payments with negligible transaction fees. This feature may be cherished by payment initiators,

but in case of insu�ciently low network tra�c, it could be unpro�table for router entities.

Our goal is to assess how transaction costs depend on topology and to what extent they are targets

to competition. To measure transaction fee price competition, we use our tra�c simulator to

estimate daily node routing income and tra�c volume for the 40 consecutive LN snapshots in

our data. Our �ndings on how revenue from routing depend on transaction fees shows a similar

shape as experimented for BitMEX, a single LN node [22].

We use the parameters of the simulator that we calibrated based on published information on

the income of certain nodes [84] in Section 7.5.1. Our analysis in this section con�rms that

transaction fees are indeed very low, and they are potentially underpriced for relevant router

118

1 2 3 4 5
daily routing income groups

0.0

0.1

0.2

0.3

0.4

fa
ile

d
tra

ffi
c

ra
tio

Fig. 7.12: The average failure ratio of individual node tra�c for �ve income groups de�ned as

the top 1−10, 11−20, 21−50, 50−100, and 101− router nodes with highest simulated income.

nodes.

To analyze the competition that a node x faces in the network, we compare the simulated tra�c

in a daily LN snapshot G and in the graph Gx that we obtain by removing node x from G.

By attempting to route the same set of τ transactions on G and Gx, �rst of all we measure

the number of failed payments ϕ(x) that were originally routed through x but are incapable of

reaching destination when x is out of service. For each node x, the failure ratio of individual

node tra�c is ϕ(x)
τ(x) where τ(x) denotes the number of transactions through x in the original

simulation.

In Figure 7.12, we show the average ratio of the tra�c of a node that has no alternate routing

path, for �ve income groups de�ned as the top 1 − 10, 11 − 20, 21 − 50, 50 − 100, and 101−

router nodes with highest simulated income. For each group, the average is taken over its nodes

x, considering the fraction of transactions ϕ(x)
τ(x) that cannot be routed anymore after removing

x. It is interesting to observe that for the �rst three groups, the average ratio of tra�c with no

alternate path is at least 0.3. This means that even if the 100 routers with highest simulated

tra�c increased their transaction fees close to on-chain fees, the majority of payment sources

would have no less expensive option to route their payments.

In the next experiment, we estimate the extent transaction prices are potentially limited by the

competition among alternate routes in LN. We take a highly pessimistic view by assuming that

a transaction that can only be routed by relying on an intermediary node x will select a payment

method outside LN immediately if x increases its transaction fees. For other transactions, we

119

1 2 3 4 5
daily routing income groups

102

103
ba

se
 fe

e
in

cr
em

en
t

* (
sa

to
sh

i)

1 2 3 4 5
daily routing income groups

102

103

104

da
ily

 in
co

m
e

ga
in

 (s
at

os
hi

)
Fig. 7.13: The maximal possible base fee increment (β∗, left), and the corresponding income gain

(right) in satoshis, given the price competition assumptions in Section 7.2.2. Income groups

are de�ned as the top 1 − 10, 11 − 20, 21 − 50, 50 − 100, and 101− router nodes with highest

simulated income.

search for the next cheapest route that avoids x and assume that x could increase its fees to

match the second cheapest option. In other words, our analysis ignores the failed transactions

ϕ(x) and is based on the remaining τ(x) − ϕ(x) where payment routing avoiding node x being

available. For each of these transactions, the di�erence of the total fee δ can be calculated from

the fees of the original path in G and the alternative route in Gx.

Our assumption is that if node x increases its base fee by β, transactions with δ ≥ β are still

willing to pay for the additional costs, while for δ < β, payments will be routed on the cheaper

alternative path, where δ is the fee di�erence to the cheapest path avoiding x. Thus, by observing

β ≥ 0 at di�erent thresholds, we propose an optimal β∗ base fee increment for each router node.

We estimate the optimal fee increase β∗ for each node over multiple snapshots and independent

simulations. For the �ve node income groups that we previously de�ned in Figure 7.12, we

show the average optimal base fee increment as well as the corresponding routing income gain

in Figure 7.13.

The transaction fee data shows that the current LN fee market is still immature, as the majority

of all channels apply default base fee (1 SAT) and fee rate (10−6 SAT), while the capacities are

usually set higher than the default value (100000 SAT) in the lnd client, see Figure 7.14.

In our measurements, we �nd that nodes with high routing income could still increase their base

120

lower
12.5%

default

9.2%

higher
78.3%

lower

31.4%

default

67.5%

higher1.1% lower0.2%

default

66.7%

higher

33.1%

Fig. 7.14: Distribution of channel capacities (left), base fees (center) and fee rates (right) with

regard to their default values in the lnd client (100000 SAT, 1 SAT, and 10−6 SAT), respectively.

fee by a few hundred satoshis, thus generating an average gain of more than 10,000 satoshis in

their daily income. Despite the low gain, our assumption is that it could get orders of magnitude

higher if router nodes increased their base fee in succession, which could have a major impact

on the competition for transaction costs.

7.7 Pro�tability Estimation of Central Routers

Router entities are an essential part of LN. They are responsible for keeping the network opera-

tional by forwarding payments. In this section, we estimate the current routing revenue of these

central nodes, and give predictions how their income will change if the tra�c over the current

network increase. Note that our technique can also be used for node owners to predict the e�ect

of opening and closing channels as well as changing capacities and transaction fees.

Central routing nodes are binding a huge amount of �nancial resources in the form of channel

capacity, which enables them to serve high volumes of tra�c. In general, router entities consist

of a single node, but sometimes they have multiple LN nodes. For example, LNBIG.com owns 25

nodes in our dataset. One of our main motivations was to estimate the annual return of invest-

ment (RoI) for entities by simulating daily tra�c over several snapshots. In our measurements

we calculate annual RoI as follows:

RoI =
estimated daily routing income in satoshis× 365

total amount of satoshis bound by channel capacities
. (7.2)

By simulating tra�c with parameters τ = 5, 000, α = 60, 000, and ε = 0.8, we estimated the

daily average income and tra�c for each router. From these statistics and additional entity

121

capacity data downloaded from 1ML.com, we estimate annual RoI in Table 7.1. We present all

router entities with at least 50 satoshis of simulated income and 10 forwarded transactions per

day on average. For each of these nodes, the following statistics are presented:

� Entity capacity as downloaded from 1ML.com. Capacity fraction is the fraction of entity

capacity and total network capacity. Remarkably, half of the total network capacity is

bound by the nodes of LNBIG.com.

� Average transaction fee, daily income, and daily tra�c, based on the simulated mean cost

in satoshis that a given entity charges for each payment routing over his channels during

the observed 40 snapshots, in ten random simulations, as explained in Section 7.2.2.

� Annual RoI calculated from simulated daily income and entity capacity by Formula 7.2.

� Economical fee in satoshis is the amount required on average to reach an annual 5% RoI.

Fee ratio is the ratio of the economical and the actual transaction fees. Higher values mean

lower pro�tability.

� Three columns show the rank of the nodes in decreasing order of annual RoI, total fee, and

tra�c.

Based on our �ndings, the annual RoI is way below 5% for almost all relevant entities. Only

rompert.com achieved a comparable amount of annual RoI (3.45%), who indeed applies orders

of magnitude higher fees than others. It is interesting to see that despite its high transaction

fees, it has the highest daily tra�c in the simulation. Note that rompert.com applies base fees

close to onchain fees, which may invalidate the assumptions of our simulator if participants fall

back to onchain rather than paying rompert.com routing fees.

Compared to the most pro�table node rompert.com, the total estimated tra�c of LNBIG.com

through its 25 nodes is only one third. The main reason behind low annual RoI is low transaction

fees. Table 7.1 shows that for forwarding α = 60, 000 satoshis, most of these entities ask for less

then 100 satoshis, which is less than 0.2% of the payment value. Very low fees may uphold

LN's core value proposition, but they are economically irrational for the central routers holding

the network together. Based on our simulations, for several routers (e.g., LNBIG.com, yalls.org,

ln1.satoshilabs.com, etc.), fees should be in the range of a few thousand satoshis to reach a 5%

annual RoI, which was approximately the magnitude of on-chain transaction fees (1,000-2,000

122

Table 7.1: Estimated daily income, tra�c and annual RoI for relevant router entities. Columns

are explained in Section 7.7. Note that on-chain transaction fees for a regular transaction (2

inputs, 2 outputs) was in the range of 1000-2000 satoshis at the time of writing our paper.

C
ap
ac
it
y

C
ap
ac
it
y

Fe
e
fo
r

D
ai
ly

D
ai
ly

A
nn
ua
l

Fe
e

E
co
no
m
ic
al

R
oI

Fe
e

T
ra
�
c

na
m
e

fr
ac
ti
on

(%
)

(m
ill
io
ns
)

60
00
0S
A
T

in
co
m
e

tr
a�

c
R
oI

(%
)

ra
ti
o

fe
e
(S
A
T
)

ra
nk

ra
nk

ra
nk

ro
m
pe
rt
.c
om

0.
95
8

96
9

43
71
.9

91
83
1.
4

83
5.
2

3.
45
89
24

1.
4

63
19
.7

1
1

1

zi
gz
ag
.io

0.
92
6

95
0

60
1.
0

67
16
.2

11
.2

0.
25
80
36

19
.4

11
64
5.
7

2
2

23

L
N
B
IG

.c
om

52
.3
09

53
68
6

32
.4

59
32
.0

28
8.
2

0.
00
40
33

12
39
.8

40
18
1.
0

17
8

4

ya
lls
.o
rg

1.
72
8

17
72

15
1.
0

20
01
.2

13
.3

0.
04
11
99

12
1.
4

18
32
5.
8

4
4

22

ln
1.
sa
to
sh
ila
bs
.c
om

2.
59
7

26
65

60
.0

11
80
.5

19
.7

0.
01
61
67

30
9.
3

18
55
6.
9

9
6

20

O
pe
nN

od
e

1.
36
4

14
00

87
.5

82
5.
6

29
.6

0.
02
15
19

23
2.
4

20
33
5.
2

6
5

17

ti
pp
in
.m
e

1.
05
4

10
81

55
.1

47
4.
4

45
.3

0.
01
60
09

31
2.
3

17
20
7.
9

10
7

12

B
lu
eW

al
le
t

1.
52
3

15
62

27
6.
0

45
3.
4

16
.4

0.
01
05
88

47
2.
2

13
03
29
.2

13
3

21

L
ig
ht
ni
ng
P
ow

er
U
se
rs
.c
om

2.
41
3

24
40

1.
4

36
8.
7

30
5.
1

0.
00
55
14

90
6.
7

12
78
.1

16
19

3

A
C
IN
Q

3.
36
7

34
55

7.
0

28
1.
7

40
.2

0.
00
29
75

16
80
.5

11
76
3.
3

18
13

14

bt
c.
ln
et
w
or
k.
to
ky
o

0.
24
0

24
5

2.
8

22
4.
0

10
7.
6

0.
03
32
47

15
0.
4

42
6.
8

5
16

7

Sa
gi
tt
ar
iu
s
A

0.
52
8

54
1

14
.9

21
8.
3

30
.9

0.
01
47
15

33
9.
8

50
47
.4

11
11

16

1M
L
.c
om

no
de

A
L
P
H
A

0.
68
8

70
6

1.
1

17
4.
5

16
4.
6

0.
00
90
21

55
4.
3

58
7.
5

15
20

5

ta
dy

je
sl
us
ho
vo

0.
41
3

42
3

1.
1

12
3.
2

11
6.
3

0.
01
06
22

47
0.
7

49
9.
0

12
21

6

E
le
ct
ro
ph
or
us

[W
_
C
_
B
]

0.
38
4

39
3

19
.5

10
1.
7

80
.8

0.
00
94
25

53
0.
5

10
34
6.
2

14
10

9

T
he
re

be
dr
ag
on
s
he
re

0.
17
2

17
6

25
.5

87
.5

7.
1

0.
01
80
50

27
7.
0

70
68
.2

7
9

25

L
ig
ht
ni
ng
T
o.
M
e

1.
20
2

12
33

0.
4

78
.3

72
5.
5

0.
00
23
17

21
58
.3

91
9.
1

20
25

2

fa
ir
ly
.c
he
ap

1.
36
5

14
01

0.
7

74
.9

10
3.
0

0.
00
19
50

25
63
.7

18
63
.8

24
24

8

B
it
re
�l
l.c
om

2.
32
3

23
83

4.
4

73
.2

31
.4

0.
00
11
21

44
60
.8

19
71
3.
9

25
15

15

B
O
LT

E
N
IN
G
.c
lu
b

0.
89
8

92
1

6.
7

54
.7

43
.3

0.
00
21
66

23
08
.8

15
36
2.
1

22
14

13

O
R
A
N
G
E
SQ

U
IR
R
E
L

0.
01
8

18
7.
0

52
.7

7.
5

0.
10
48
82

47
.7

33
3.
8

3
12

24

lig
ht
ni
ng
-r
ou
le
tt
e.
co
m

0.
72
8

74
7

1.
1

49
.6

46
.8

0.
00
24
21

20
65
.7

21
89
.6

19
23

10

C
oi
nG

at
e

0.
82
1

84
2

1.
1

49
.2

46
.4

0.
00
21
29

23
48
.6

24
89
.5

23
22

11

ln
.B
it
So
ap
B
ox
.c
om

0.
59
0

60
5

1.
6

37
.8

23
.9

0.
00
22
76

21
96
.6

35
03
.3

21
18

18

B
lo
ck
st
re
am

St
or
e

0.
07
6

78
1.
6

37
.1

23
.2

0.
01
73
64

28
7.
9

46
0.
7

8
17

19

123

satoshis8 at the time of writing our paper).

10 3 10 2 10 1 100

Fraction of original capacity

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

rig
in

al
 in

co
m

e

name
lnbig.com
rompert.com
zigzag.io
yalls.org
LightningPowerUsers.com
ACINQ
1ML.com node ALPHA
LightningTo.Me
Bitrefill.com

Fig. 7.15: The remaining fraction of the original estimated daily routing income, after reducing

node capacities to the given fractions.

10 3 10 2 10 1 100

Fraction of original capacity

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Fa
ct

or
 o

f g
ai

n
in

 R
oI

name
lnbig.com
rompert.com
zigzag.io
yalls.org
LightningPowerUsers.com
ACINQ
1ML.com node ALPHA
LightningTo.Me
Bitrefill.com

Fig. 7.16: RoI gain after reducing node capacities to the given fractions.

8See https://bitcoinfees.info/

124

https://bitcoinfees.info/

Capacity overprovisioning also causes low RoI. For example, extremely large LNBIG.com ca-

pacities result in low RoI, despite the reasonable daily income reported. By using our tra�c

simulator, we observed that the router entities of Table 7.1 can increase their RoI by reducing

their channel capacities. For each of these routers, we estimated the changes in revenue (Fig-

ure 7.15) and RoI (Figure 7.16), after reducing all of its edge capacities to 50, 10, 5, 1, 0.5, 0.1%

of the original value, with the assumption that all other routers keep their capacities. In our

measurements, LNBIG.com can signi�cantly improve its RoI by bounding only 1% of its original

capacity values. In Table 7.3, we compute the estimated optimal RoI for the central routers.

To estimate whether routers can be more pro�table with an increase in tra�c volume or trans-

action values, we ran simulations with di�erent values of τ and α and measured the fraction of

unsuccessful payments as well as the average length of completed payment paths.

First we vary the transaction value α with a �xed number of daily transactions τ = 5, 000. In

Figures 7.17 and 7.18, we present statistics for ten central entities based on their service pro�les.

For example, zigzag.io is a cryptocurrency exchange service, while ACINQ provides solutions

for Bitcoin scalability. Additional entity pro�les can be found in Table 7.2. In Figure 7.17,

the income for most of the nodes signi�cantly increases with transaction value, while this e�ect

is almost negligible for rompert.com, LightningPowerUsers.com, and 1ML.com node ALPHA,

whose behavior can be explained by charging almost only a base fee and applying a fee rate close

Table 7.2: LN network entities with related service pro�les.

Entity name Service pro�le

rompert.com Provider of some Lightning Network related information

LNBIG.com Half of the total network capacity in bound by this entity

zigzag.io Exchange Top Cryptocurrencies in seconds with low fees

yalls.org Read and write articles, with Lightning Network micropayments.

ln1.satoshilabs.com Cryptocurrency solution developers

tippin.me Send and receive Bitcoin tips on Twitter

ACINQ One of the leading companies working on Bitcoin scalability

1ML.com node ALPHA Lightning Network Search and Analysis Engine

LightningTo.Me Helping to resolve routing and capacity issues

LightningPowerUsers.com Request Inbound Capacity

125

Table 7.3: Estimated optimal channel capacity reduction for maximal RoI of the routers of

Table 7.1. Capacity fraction is the estimated optimal fraction of the original channel capacities

and income fraction is the estimated fraction of the original income by using reduced channel

capacities.

Entity RoI gain Capacity Income Original Optimal Optimal Original

name (times) fraction fraction RoI (%) RoI (%) RoI rank RoI rank

lnbig.com 15.263039 0.01 0.152630 0.004033 0.061557 5.0 17.0

Bitre�ll.com 8.815776 0.01 0.088158 0.001121 0.009881 21.0 25.0

yalls.org 7.274128 0.05 0.363706 0.041199 0.299685 3.0 4.0

fairly.cheap 5.527895 0.01 0.055279 0.001950 0.010781 18.0 24.0

LightningTo.Me 4.428039 0.05 0.221402 0.002317 0.010258 20.0 20.0

ln.BitSoapBox.com 4.270262 0.10 0.427026 0.002276 0.009720 22.0 21.0

ACINQ 3.492428 0.05 0.174621 0.002975 0.010391 19.0 18.0

LightningPowerUsers.com 3.374553 0.10 0.337455 0.005514 0.018608 13.0 16.0

Blockstream Store 3.211826 0.10 0.321183 0.017364 0.055771 6.0 8.0

ln1.satoshilabs.com 3.165573 0.05 0.158279 0.016167 0.051176 8.0 9.0

There be dragons here 3.064046 0.05 0.153202 0.018050 0.055307 7.0 7.0

Electrophorus [W_C_B] 2.229242 0.10 0.222924 0.009425 0.021010 11.0 14.0

lightning-roulette.com 1.724278 0.10 0.172428 0.002421 0.004174 23.0 19.0

BlueWallet 1.672075 0.05 0.083604 0.010588 0.017704 15.0 13.0

zigzag.io 1.511212 0.10 0.151121 0.258036 0.389947 2.0 2.0

OpenNode 1.458822 0.50 0.729411 0.021519 0.031392 10.0 6.0

tady je slushovo 1.445600 0.50 0.722800 0.010622 0.015355 16.0 12.0

BOLTENING.club 1.430646 0.10 0.143065 0.002166 0.003098 24.0 22.0

btc.lnetwork.tokyo 1.422923 0.50 0.711462 0.033247 0.047307 9.0 5.0

CoinGate 1.400418 0.50 0.700209 0.002129 0.002981 25.0 23.0

rompert.com 1.330968 0.50 0.665484 3.458924 4.603716 1.0 1.0

ORANGESQUIRREL 1.313521 0.50 0.656760 0.104882 0.137764 4.0 3.0

tippin.me 1.297128 0.50 0.648564 0.016009 0.020766 12.0 10.0

1ML.com node ALPHA 1.273918 0.50 0.636959 0.009021 0.011491 17.0 15.0

Sagittarius A 1.216862 0.50 0.608431 0.014715 0.017906 14.0 11.0

126

104 105

 (satoshi)

102

103

104

105

in
co

m
e

(s
at

os
hi

)

rompert.com
LNBIG.com
zigzag.io
yalls.org
ln1.satoshilabs.com
tippin.me
ACINQ
LightningPowerUsers.com
1ML.com node ALPHA
LightningTo.Me

Fig. 7.17: Average simulated daily routing income of some LN router entities as the function of

the transaction value α.

104 105

 (satoshi)

101

102

103

tra
ffi

c

rompert.com
LNBIG.com
zigzag.io
yalls.org
ln1.satoshilabs.com
tippin.me
ACINQ
LightningPowerUsers.com
1ML.com node ALPHA
LightningTo.Me

Fig. 7.18: Average simulated daily routing tra�c of some LN router entities as the function of

the transaction value α.

127

104 105

 (satoshi)

10 1

100

101

102

103

in
co

m
e

pe
r t

ra
ns

ac
tio

n
(s

at
os

hi
)

rompert.com
LNBIG.com
zigzag.io
yalls.org
ln1.satoshilabs.com
tippin.me
ACINQ
LightningPowerUsers.com
1ML.com node ALPHA
LightningTo.Me

Fig. 7.19: Average simulated daily routing income per transaction for some LN router entities as

the function of the transaction value α.

to zero.

The simulated amount of daily tra�c for the ten central nodes is shown in Figure 7.18. We

observe that scalability and capacity providers LightningTo.Me, LightningPowerUsers.com, and

1ML.com node ALPHA are responsible for forwarding a signi�cant amount of payments irre-

spective of α. Probably due to the lack of high capacity channels, the tra�c of rompert.com and

1ML.com node ALPHA drop at α = 500, 000 satoshis (≈ 41 USD). By contrast, the number of

payments routed by LNBIG.com increases with payment value due to the fact that this entity

owns approximately half of all network capacity, as seen Table 7.1. In Figure 7.19, we provide an

e�ciency metric for each entity by dividing estimated income by tra�c volume. The e�ciency of

rompert.com and LNBIG.com are surpassed by zigzag.io and yalls.org for α ≥ 60, 000 satoshis,

as these service providers have reasonable routing income relative to the number of daily for-

warded transactions. On the other hand, LightningPowerUsers.com, 1ML.com node ALPHA,

and LightningTo.Me have orders of magnitude lower e�ciency than other relevant entities. They

are likely not considering routing pro�tability, as their transaction fees are negligible.

Next, we estimate the e�ect of channel depletion, which can be a side-e�ect of increasing the

tra�c without increasing channel capacities. In a highly simplistic experiment, we compare

tra�c with simulated channel depletion with the case when we allow the simulator to use channel

directions without limits. We take depletion into account by suspending depleted channels until

a reverse payment reopens them. On the top of Figure 7.20, we show the routing income estimate

with depletion taken into account for the top ten router nodes, as the function of τ . And on

128

3000 4000 5000 6000 7000 8000 9000 10000 11000

102

103

104

105

in
co

m
e

(s
at

os
hi

)

rompert.com
LNBIG.com
zigzag.io
yalls.org
ln1.satoshilabs.com
tippin.me
ACINQ
LightningPowerUsers.com
1ML.com node ALPHA
LightningTo.Me

3000 4000 5000 6000 7000 8000 9000 10000 11000

0.8

1.0

1.2

1.4

1.6

1.8

in
co

m
e

ra
tio

rompert.com
LNBIG.com
zigzag.io
yalls.org
ln1.satoshilabs.com
tippin.me
ACINQ
LightningPowerUsers.com
1ML.com node ALPHA
LightningTo.Me

Fig. 7.20: Average simulated daily routing income (top) and the income divided by the optimistic

income when channel depletion is ignored (bottom) for some LN router entities as the function

of the simulated transaction count τ . Note that the ratio is above 1 for most nodes as they can

take over routing for depleted channels.

129

10
00

50
00

10
00

0

20
00

0

50
00

0

 (count)

500000

200000

100000

60000

10000

 (s
at

os
hi

)
0.44 0.49 0.54 0.62 0.74

0.40 0.43 0.46 0.50 0.60

0.38 0.41 0.43 0.46 0.53

0.35 0.37 0.38 0.41 0.47

0.32 0.33 0.33 0.34 0.37

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

10
00

50
00

10
00

0

20
00

0

50
00

0

 (count)

500000

200000

100000

60000

10000

 (s
at

os
hi

)

3.14 3.17 3.24 3.30 3.44

3.04 3.11 3.15 3.20 3.37

2.97 3.02 3.06 3.11 3.19

2.92 2.99 3.03 3.07 3.13

2.77 2.81 2.85 2.91 2.97

2.8

2.9

3.0

3.1

3.2

3.3

3.4

Fig. 7.21: Fraction of failed transactions (left) and average length of completed payment paths

(right) with respect to the simulated transaction value α and the number of sampled transactions

τ .

the bottom of Figure 7.20, we show the ratio of the routing income with and without depletion

taken into account. At �rst glance, it is surprising that the fraction is above 1 for most of the

router nodes. To explain, observe that channels with low routing fees are used and depleted �rst,

and these channels will loose revenue compared to the optimistic case. However, if there is an

alternate routing path with more expensive transaction fees, the owners of these channels will

observe an increase in revenue due to the depletion of low cost channels.

As we simulate more tra�c or execute more expensive payments, both the fraction of unsuccessful

payments and the average length of completed payment paths increase, as we show in Figure 7.21.

Transactions can fail in the simulation when there is no path from the source to the recipient

such that the channels have at least α available capacity. If α is too high, then only a fraction of

all channels can be used for payment routing, while in the case of an extremely large number of

transactions, the available capacity of several channel directions becomes depleted. For example,

channels leading to popular merchants could become blocked in case of heavy one-directional

tra�c. The growth in completed payment path length is in agreement with this scenario.

In Figure 7.21, we also observe that lower payment amounts do not signi�cantly decrease the

probability of a payment being successfully routed. Hence, we do not expect that Atomic Multi-

path payments (AMP)9 that allow a sender to atomically split a payment �ow amongst several

individual payment �ows can signi�cantly increase the success rate of the transactions.

9See: https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/000993.html

130

https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/000993.html

LN
BI

G.
co

m
1M

L.
co

m
 n

od
e

AL
PH

A
ta

dy
 je

 sl
us

ho
vo

zig
za

g.
io

Lig
ht

ni
ng

Po
we

rU
se

rs
.c

om
tip

pi
n.

m
e

ln
.B

itS
oa

pB
ox

.c
om

Co
in

Ga
te

bt
c.

ln
et

wo
rk

.to
ky

o
OR

AN
GE

SQ
UI

RR
EL

ro
m

pe
rt.

co
m

AC
IN

Q
ln

1.
sa

to
sh

ila
bs

.c
om

Bl
oc

ks
tre

am
 S

to
re

ya
lls

.o
rg

fa
irl

y.
ch

ea
p

BO
LT

EN
IN

G.
clu

b
Op

en
No

de
Bi

tre
fil

l.c
om

Sa
gi

tta
riu

s A
Lig

ht
ni

ng
To

.M
e

lig
ht

ni
ng

-ro
ul

et
te

.c
om

Th
er

e
be

 d
ra

go
ns

 h
er

e
Bl

ue
W

al
le

t
El

ec
tro

ph
or

us
 [W

_C
_B

]0.380

0.385

0.390

0.395

0.400

0.405

0.410

0.415

0.420
original failed transaction ratio

Fig. 7.22: The fraction of incomplete payments, out of the simulated τ = 5000 transactions, after

removing the given entity from LN. The original fraction of failed transactions 0.3823 is marked

by the dashed line.

A �nal relevant metric is the number of payments that fail if the given entity becomes unavailable.

In Figure 7.22, we show the fraction of unsuccessful payments after removing the given entity.

For example, after removing the 25 nodes of LNBIG.com from LN, the rate of failed transactions

increases to 0.417 from the original level of 0.382. Recall from Section 7.4 that a large fraction of

the payments cannot be routed, since several nodes have only disabled or no outbound channels

with capacity over the simulated payment value α.

In this section, we estimated the income of the central router nodes under various settings.

Although our experiments con�rm that at the present structure and level of usage, the partic-

ipation for most routing nodes is not economical, we also foresee a potential in LN to make

routing pro�table with little adjustments in pricing and capacity policies if the tra�c volume

will increase.

7.8 Payment Privacy

While LN is often considered a privacy solution for Bitcoin as it does not record every transaction

in a public ledger, the fundamentally di�erent privacy implications of LN are often misunder-

131

stood [59,64]. LN provides little to no privacy for payments with a path of length two, since the

single intermediary can de-anonymize both sender and receiver if it knows that the payment path

is indeed of length two. The onion routing technique [71] used in LN provides a weaker notion

of privacy called plausible deniability. By onion routing, an intermediary has no information on

its position in the path and the sender node can claim that the payment was routed from one of

its neighbors. In this sense, the privacy guarantees of LN payment routing are quite similar in

spirit to that of TOR.

We remark that plausible deniability is also achieved for on-chain transactions by coin mixing

techniques. In wallets supporting coin-mixing one can regularly observe privacy-enhanced trans-

actions with large anonymity sets, where the identity of a sender is hidden by mixing with as

many as 100 other transaction senders [85]. Hence for LN to provide privacy guarantees stronger

than on-chain transactions, o�ering plausible deniability in itself can be insu�cient.

Next, we assess the strength of privacy for simulated LN payments. By our discussion, high node

degrees and long payment paths are compulsory for privacy. First, payments from low degree

nodes are vulnerable, as the immediate predecessor or successor set is too small and can allow

privacy attacks for example by investigating possible channel balances. Second, the majority of

payments should be long, otherwise an intermediary has strong statistical evidence for the source

or the destination of a large number its routed payments.

In Figure 7.23, we plot the fraction of nodes with su�ciently high degree to plausibly hide its

payment as to be originating from one of its neighbors. We observe that half of the nodes have

�ve or less neighbors, which makes their transactions vulnerable for attacks based on information

either directly obtained from its neighbors, or inferred through investigating channel capacities.

Furthermore, privacy guarantees are worsened as the value of the payment increases, since we can

exclude payment channels from payment source candidates with capacity less than the payment

value.

Next, we investigate the possible length of payment paths and the trade-o� between length and

cost. Note that the source has control over the payment path, hence it can deliberately select

long paths to maintain its privacy, however this can result in increased costs.

The topological properties of LN, namely, its small-world nature, allow for very short payment

path lengths. The average shortest path length of LN is around 2.8 [134], meaning that most

payment routes involve one or two intermediaries. This phenomenon is further exacerbated by

132

5 10 20 50 100
degree threshold

2

5

10

20

50
pr

ob
ab

ilit
y

(%
)

no capacity restriction
120K SAT (~10USD)
600K SAT (~50USD)
1200K SAT (~100USD)
2400K SAT (~200USD)

Fig. 7.23: The probability that a node has more

channels with at least the given capacity than

the degree threshold. Observe that larger pay-

ment amounts increase the risk of yielding more

statistical evidence for tracing the source or des-

tination of a payment.

Alice Router Bob

Payment Route payment

Fig. 7.24: Plausible deniability in LN. Alice can

plausible deny being the source of a payment.

Similarly, router cannot be sure whether Bob

is the recipient of the payment or one of Bob's

neighbors.

the client software, which prefers choosing shortest paths10, resulting in a considerable fraction

of single-hop transactions. However, we note that newer advancements in LN client softwares,

e.g. c-lightning, incorporate solutions to decrease the portion of single-hop payments 11

Loosely connecting to merchants and paying them only via routing facilitated by intermediaries

is advantageous not just for privacy considerations but also for reducing the required number of

payment channels, and thus limiting the amount that needs to be committed. By contrast, our

measurements in Figure 7.3 showed that nodes seem to prefer opening direct links to other nodes

and especially to merchant nodes. The �gure is obtained by computing the shortest path length

between u and v for each new edge (u, v) immediately before the new edge was created. If there

is no such path, i.e., u and v lie in di�erent connected components, we assign ∞ to the edge.

Simulations reveal that on average 16% of the payments are single-hop payments, see Figure 7.25.

By increasing the fraction of merchants among receivers, this fraction increases to 34%, meaning

that strong statistical evidence can be gathered on the payment source and destination through

the router node for more than one third of the LN payments. We note that in practice, the ratio

of de-anonymizable transactions might be even larger, since payments with longer routes can

also be de-anonymized if all intermediary router nodes correspond to the same company.

In our �nal experiment, we estimate the payment fee increase by using longer paths in the existing

10Source: https://github.com/lightningnetwork/lnd/blob/40d63d5b4e317a4acca2818f4d5257271d4ac2c7/

routing/path�nd.go
11Source: https://github.com/ElementsProject/lightning/commit/d23650d2edbfe16a21d0e637e507531a60dd2ddd.

133

https://github.com/lightningnetwork/lnd/blob/40d63d5b4e317a4acca2818f4d5257271d4ac2c7/routing/pathfind.go
https://github.com/lightningnetwork/lnd/blob/40d63d5b4e317a4acca2818f4d5257271d4ac2c7/routing/pathfind.go
https://github.com/ElementsProject/lightning/commit/d23650d2edbfe16a21d0e637e507531a60dd2ddd

11%

2
16%

3
39%

4

30% 5
11%

longer4%

=0.0

13%

2
26%

3 38%

4

22%
5

8%
longer3%

=0.5

14%

2

31%

3 38%

4
18%

56% longer2%

=0.8

15%

2

34%

3
38%

4
16%

55% longer2%

=1.0

Fig. 7.25: Distribution of simulated path length with respect to the ratio of merchants as trans-

action endpoints (ε ∈ {0.0, 0.5, 0.8, 1.0}).

network, based on the assumption that privacy-enhanced routed payments could be achieved by

deliberately selecting longer payment routes. While paths of length more than a prede�ned

number can be found in polynominal time [23], the algorithm is quite complex and in our case

needs enhancements to use the edge costs.

We implemented a heuristic solution to �nd cheap but longer routing paths starting out with

the existing known lowest cost one or ones. Note that one can come up with several variants

of genetic search algorithms to generate candidate long routing paths similar to ours, and more

re�ned methods can potentially incur even lower increase in the routing cost.

Our algorithm has one or more initial routing paths and a target length ` as input. In the �rst

step, to increase the length of the routing paths, we attempt to replace edges by paths of length

two. We iterate over the edges of the candidate routing paths until we obtain k = 100 paths

of length `, where k is a parameter. And in the second step, we generate more routing paths

by shu�ing the nodes at the same distance from the source and the target across the existing

candidates. Finally, we select the lowest cost length ` routing path from the set produced by the

algorithm.

As the conclusion of our experiment with searching for longer low cost routing paths, in Fig-

ure 7.26 we observe that we can �nd routing paths that only marginally increase the median cost

134

of the transactions by selecting paths of length up to six.

In summary, we observed the very small world nature of LN, which is in contrast to the fact

that privacy-aware payment routing could be achieved by deliberately selecting longer payment

routes. The fact that many channel openings are triangle closing could suggest the unreliability

of payment routing in LN. Another reason for the creation of triangle-closing payment channels

can also be the possibility to inject additional hops to preserve transaction privacy, which, by

our simulation, is a low additional cost solution to enhancing privacy.

Overall, we raised questions about the popular belief of the LN community that LN payments

provide superior privacy than on-chain transactions. We believe that deliberately longer payment

paths are required to maintain payment privacy, which does not drastically increase costs at the

current level of transaction fees.

7.9 Conclusion

In this work, we analyzed Lightning Network, Bitcoin's payment channel network from a network

scienti�c and cryptoeconomic point of view. Past results on the Lightning Network were unable to

analyze the fee and revenue structure, as the data on the actual payments and amounts is strictly

private. Our main contribution is an open-source LN tra�c simulator that enables research on

the cryptoeconomic consequences of the network topology without requiring information on the

actual �nancial �ow over the network. The simulator can incorporate the assumption that

the payments are mostly targeted towards the merchants identi�ed by using the tags provided

by node owners. We validated some key parameters of the simulator such as tra�c volume

and amount by simulating the revenue of central router nodes and comparing the results with

information published by certain node owners. By using our open source tool, we encourage

node owners to build more accurate estimates of LN properties by incorporating their private

2 3 4 5 6
Minimum path length

1.2

1.4

1.6

1.8

M
ed

ia
n

se
nd

er
 c

os
t

Fig. 7.26: Median sender costs in satoshis for �xed path length routing.

135

knowledge on usage patterns.

Our simulator provided us with two main insights. First, the participation of most router nodes

in LN is economically irrational with the present fee structure; however, signs of sustainability

are seen with increased overall tra�c volume over the network. By contrast, at the present level

of usage, if routers start acting rationally, payment fees will rise signi�cantly, which might harm

one of LN's core value propositions, namely, negligible fees. Second, the topological properties of

LN make a considerable fraction of payments easily de-anonymizable. However, with the present

fee structure, paths can be obfuscated by injecting extra hops with low cost to enhance payment

privacy. We release the source code of our simulator for further research on GitHub12.

12https://github.com/ferencberes/LNTra�cSimulator

136

https://github.com/ferencberes/LNTrafficSimulator

Summary

In this work, we proposed several techniques to mine social and cryptocurrency networks. First,

we developed an online network centrality measure, temporal Katz centrality based on the notion

of time-respecting walks. By de�nition, the centrality score for a given node at time t is the

weighted sum of time-respecting walks that reach this node up to time t. Our model is an

online updateable extension of the well-known Katz-index for dynamically evolving networks.

We conducted several experiments on large social networks and found that (1) temporal Katz

centrality outperforms Temporal PageRank and static centrality metrics, as well as (2) adapts

well to concepts drifts in the data.

Second, we developed two online node embedding algorithms for graph streams. Our StreamWalk

algorithm is built upon the notion of time-respecting walks similar to temporal Katz centrality,

while our online second order similarity algorithm directly learns the neighborhood overlap of

node pairs as new links arrive from the edge stream. We deployed our online node embedding

algorithms for a dynamic node similarity search task and found that they outperform static

baselines such as LINE, Node2Vec, and DeepWalk.

Our results related to static node embedding applications on social and cryptocurrency networks

are twofold.

� By collecting Covid-19 vaccine-related discussions from Twitter, we were able to deploy

static node embedding models on the underlying reply network between users. Our results

show that representations learned by node embedding models are useful features for the

task of vaccine skepticism detection. Furthermore, the representation space even managed

to capture the topic hierarchy for vax-skeptic and pro-vaxxer users.

� We deployed static node embeddings to link Ethereum addresses that belong to the same

user. Our supervised evaluation shows that node embedding models are very powerful tools

137

for Ethereum address deanonymization, and it requires a carefully planned presence on the

blockchain to fool these models.

Finally, we analyzed the Bitcoin Lightning Network from a pro�tability and privacy perspective.

We designed a payment tra�c simulator that we �t for pro�tability reports of network partic-

ipants. Our simulated results reveal that central router nodes have low RoI in this payment

channel network. On the other hand, they have very strong statistical evidence on payment

sender and receiver nodes as payments are usually realized through short paths. In this work,

we also propose a genetic algorithm to improve payment security with only a negligible increase

in the general transaction fee paid by payment senders.

138

Összefoglalás

Kutatásom során számos technikát javasoltunk a közösségi és kriptopénz hálózatok elemzésére.

El®ször is kidolgoztunk egy valós id®ben frissíthet® gráf központiság mértéket, a dinamikus Katz

központiságot, amely az id®rendezett séták fogalmára épül. De�níciónk szerint a gráf egy adott

csúcsának központiság mér®száma egy adott id®pontban a csúcsot elér® id®rendezett séták súly-

ozott összege. Az általunk javasolt módszer a jól ismert Katz-index online frissíthet® kiterjesztése

id®ben változó gráfokra. Nagyméret¶ közösségi hálózatokon végzett méréseink igazolták, hogy

(1) a dinamikus Katz központiság jobban teljesít, mint a szintén id®rendezett utakra épül® di-

namikus PageRank, illetve a hagyományos statikus központiság mértékek. Emellett (2) a mód-

szer jól alkalmazkodik az adatfolyam/élfolyam eloszlásában bekövetkezett változásokhoz.

Disszertációm ezután részletesen beszámol az általunk kifejlesztett két online gráf csomópont-

beágyazó algoritmusról. A StreamWalk módszerünk szintén az id®rendezett útvonalak koncep-

ciójára épít, míg az online másodrend¶ hasonlóság módszerünk közvetlenül megtanulja a csúcs-

párok szomszédsági hasonlóságát, amint új élek érkeznek az élfolyamból. A javasolt algoritmu-

sokat egy dinamikus csomópont-hasonlóság-keresési feladaton értékeltük ki, és azt találtuk, hogy

módszereink felülmúlják a statikus gráfokra kifejlesztett csúcs-beágyazó eljárásokat, például a

LINE-t, a node2vec-et vagy a DeepWalk-ot.

Munkám során a statikus csomópont-beágyazó algoritmusok számos új alkalmazási lehet®ségét

is megvizsgáltam. F®bb eredményeim a következ®k:

� Covid-19 véd®oltásokhoz kapcsolódó nagyméret¶ tweet adathalmazunkból kinyert gráfon

tanítottam statikus csomópont-beágyazó algoritmusokat. Gépi tanulás segítségével iga-

zoltam, hogy a beágyazó módszerek által megtanult felhasználó reprezentációk jelent®sen

javítják az oltásszkepticizmus detektálhatóságát a Twitter üzenetekben. Méréseink továbbá

igazolták a vakcina támogató és ellenz® felhasználók, illetve az ®ket érdekl® altémák el-

139

szeparálódását a reprezentációs térben.

� Egy másik kutatás során els®ként vizsgáltuk meg csomópont-beágyazó módszerek hatékony-

ságát kriptopénz hálózatokon. Esetünkben az Ethereum tranzakciós gráfon elemeztük

az azonos felhasználóhoz tartozó Ethereum �ókok felfedhet®ségét. Méréseink kimutat-

ták, hogy a csomópont-beágyazási modellek nagyon hatékony eszközök az Ethereum �ókok

deanonimizálásához, és gondosan megtervezett felhasználói jelenlét szükséges a blokklán-

con ahhoz, ha el akarjuk kerülni, hogy a vizsgált algoritmusok könnyen ránk tanuljanak és

ezzel felfedjék az általunk kezelt Ethereum �ókokat.

A kriptopénz hálózatok elemzését folytatva, megvizsgáltuk a Bitcoin Lightning Networköt (LN)

az adatvédelem és a részvev®k befektetett pénzmennyiségének megtérülése szempontjából. Egy

olyan LN forgalom szimulátort terveztünk, amely képes megbecsülni a hálózat résztvev®inek

tranzakciós költségekb®l származó jövedelmét. Szimulált eredményeink azt mutatják, hogy a

hálózat m¶ködése szempontjából elengedhetetlen központi csúcsok is csak rendkívül alacsony

megtérülés mellett üzemelnek. Az adatvédelem szempontjából viszont kedvez®tlen módon, ezek

a csúcsok nagy valószín¶séggel ismerik a hálózatban lebonyolított ki�zetések feladó és címzett

csúcsait, mely információknak rejtve kellene maradnia. A probléma kiküszöbölésére egy genetikus

algoritmust javasoltunk, amely képes biztonságosabb útvonalon realizálni a ki�zetéseket, és ezzel

csak elhanyagolható többlet költséget ruházva a feladó csúcsokra.

140

141

List of abbreviations

Data sets or events UO17 US Open 2017 Twitter data set (see Section 2.2)

RG17 Roland-Garros 2017 Twitter data set (see Section 2.2)

TREC Text Retrieval Conference

Performance metrics DCG Discounted Cumulative Gain

NDCG Normalized Discounted Cumulative Gain

AUC Area under the ROC curve

RoI Return of interest

Models GF Graph factorization [2]

DW DeepWalk [118]

SW StreamWalk (see Section 4.3.1)

SO Online second order similarity (see Section 4.3.2)

SW+SO Combination of SW and SO (see Section 4.4.3)

Cryptocurrency PCN Payment channel network

networks LN Lightning network

AMP atomic multipath payments

P2P Peer-to-peer

UTXO unspent transaction output

ENS Ethereum Name Service

ETH Ether

TC Tornado Cash

EAO Externally owned account

EVM Ethereum Virtual Machine

ICO Initial Coin O�ering

ERC-20 A technical standard for Ethereum-based tokens

zkSNARK Zero-Knowledge Succinct Non-Interactive Argument of Knowledge

142

Bibliography

[1] Charu Aggarwal and Karthik Subbian. Evolutionary network analysis: A survey. ACM

Computing Surveys (CSUR), 47(1):10, 2014.

[2] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, and Alexan-

der J Smola. Distributed large-scale natural graph factorization. In Proceedings of the 22nd

international conference on World Wide Web, pages 37�48. ACM, 2013.

[3] Nesreen Ahmed, Ryan Rossi, John Lee, Xiangnan Kong, Theodore Willke, Rong Zhou,

and Hoda Eldardiry. Learning role-based graph embeddings. In StarAI workshop, IJCAI

2018, pages 1�8, 2018.

[4] Azzah Al-Maskari, Mark Sanderson, and Paul Clough. The relationship between ir e�ec-

tiveness measures and user satisfaction. In Proceedings of the 30th annual international

ACM SIGIR conference on Research and development in information retrieval, pages 773�

774. ACM, 2007.

[5] Ahmad Alsayed and Desmond J Higham. Betweenness in time dependent networks. Chaos,

Solitons & Fractals, 72:35�48, 2015.

[6] Pablo Aragón, Karolin Eva Kappler, Andreas Kaltenbrunner, David Laniado, and Yana

Volkovich. Communication dynamics in twitter during political campaigns: The case of

the 2011 spanish national election. Policy & Internet, 5(2):183�206, 2013.

[7] Georgia Avarikioti, Gerrit Janssen, Yuyi Wang, and Roger Wattenhofer. Payment net-

work design with fees. In Data Privacy Management, Cryptocurrencies and Blockchain

Technology, pages 76�84. Springer, 2018.

[8] Georgia Avarikioti, Rolf Scheuner, and Roger Wattenhofer. Payment networks as creation

games, 2019.

143

[9] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. Mod-

els and issues in data stream systems. In Proceedings of the twenty-�rst ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database systems, pages 1�16. ACM, 2002.

[10] Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, and Sebastiano Vigna. Four

degrees of separation. In Proceedings of the 3rd Annual ACM Web Science Conference,

2012.

[11] Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. Fast incremental and personalized

pagerank. Proceedings of the VLDB Endowment, 4(3):173�184, 2010.

[12] Bahman Bahmani, Ravi Kumar, Mohammad Mahdian, and Eli Upfal. Pagerank on an

evolving graph. In Proceedings of the 18th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 24�32. ACM, 2012.

[13] LEI BAI, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolu-

tional recurrent network for tra�c forecasting. In H. Larochelle, M. Ranzato, R. Hadsell,

M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,

volume 33, pages 17804�17815. Curran Associates, Inc., 2020.

[14] Eytan Bakshy, Jake M Hofman, Winter A Mason, and Duncan J Watts. Everyone's an in-

�uencer: quantifying in�uence on twitter. In Proceedings of the 4th international conference

on Web search and data mining (WSDM), 2011.

[15] Ziv Bar-Yossef, Ravi Kumar, and D Sivakumar. Reductions in streaming algorithms, with

an application to counting triangles in graphs. In SODA, volume 2, pages 623�632, 2002.

[16] Albert-László Barabási. Scale-free networks: A decade and beyond. Science,

325(5939):412�413, 2009.

[17] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for em-

bedding and clustering. In NIPS, pages 585�591, 2002.

[18] András Benczúr, Ferenc Béres, Domokos Kelen, and Róbert Pálovics. Tutorial on graph

stream analytics. DEBS '21, page 168�171, New York, NY, USA, 2021. Association for

Computing Machinery.

[19] Ferenc Béres, Domokos M. Kelen, Róbert Pálovics, and András A Benczúr. Node embed-

dings in dynamic graphs. Applied Network Science, 4(64):25, 2019.

144

[20] Ferenc Béres, Róbert Pálovics, Anna Oláh, and András A Benczúr. Temporal walk based

centrality metric for graph streams. Applied Network Science, 3(32):26, 2018.

[21] Albert Bifet, Geo� Holmes, Richard Kirkby, and Bernhard Pfahringer. Moa: Massive

online analysis. Journal of Machine Learning Research, 11(May):1601�1604, 2010.

[22] BitMEX. The lightning network (part 2) � routing fee economics. https://blog.bitmex.

com/the-lightning-network-part-2-routing-fee-economics/.

[23] Hans L. Bodlaender. On linear time minor tests with depth-�rst search. Journal of Algo-

rithms, 14(1):1�23, 1993.

[24] Paolo Boldi and Sebastiano Vigna. Axioms for centrality. Internet Mathematics, 10(3-

4):222�262, 2014.

[25] Dan Braha and Yaneer Bar-Yam. From centrality to temporary fame: Dynamic centrality

in complex networks. Complexity, 12(2):59�63, 2006.

[26] Simina Brânzei, Erel Segal-Halevi, and Aviv Zohar. How to charge lightning. arXiv preprint

arXiv:1712.10222, 2017.

[27] Andrei Z Broder, Moses Charikar, Alan M Frieze, and Michael Mitzenmacher. Min-wise

independent permutations. Journal of Computer and System Sciences, 60(3):630�659, 2000.

[28] Ferenc Béres and András A. Benczúr. Online centrality in temporally evolving networks.

In Book of Abstracts of the 6th International Conference on Complex Networks and Their

Applications, pages 184�186, 2017.

[29] Ferenc Béres, Rita Csoma, Tamás Vilmos Michaletzky, and András A. Benczúr. Vaccine

skepticism detection by network embedding. In Book of Abstracts of the 10th International

Conference on Complex Networks and Their Applications, pages 241�243, 2021.

[30] Ferenc Béres, Róbert Pálovics, and András A. Benczúr. Temporal walk based centrality

metric for graph streams. In 14th International Workshop on Mining and Learning with

Graphs, held in conjunction with KDD'18, 2018.

[31] Ferenc Béres, Róbert Pálovics, Domokos M. Kelen, Dávid Szabó, and András A. Benczúr.

Node embeddings in dynamic graphs. In Book of Abstracts of the 7th International Con-

ference on Complex Networks and Their Applications, pages 178�180, 2018.

145

https://blog.bitmex.com/the-lightning-network-part-2-routing-fee-economics/
https://blog.bitmex.com/the-lightning-network-part-2-routing-fee-economics/

[32] Ferenc Béres, István András Seres, and András A Benczúr. A cryptoeconomic tra�c

analysis of bitcoin's lightning network. Cryptoeconomic Systems, 1(1), 2021.

[33] Ferenc Béres, István András Seres, András A Benczúr, and Mikerah Quintyne-Collins.

Blockchain is watching you: Pro�ling and deanonymizing ethereum users. In 2021 IEEE In-

ternational Conference on Decentralized Applications and Infrastructures (DAPPS), pages

69�78, 2021.

[34] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with

global structural information. In Proceedings of the 24th ACM International on Conference

on Information and Knowledge Management, pages 891�900. ACM, 2015.

[35] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with

global structural information. In Proceedings of the 24th ACM International on Conference

on Information and Knowledge Management, CIKM '15, page 891�900, New York, NY,

USA, 2015. Association for Computing Machinery.

[36] Yi Chang, Xuanhui Wang, Qiaozhu Mei, and Yan Liu. Towards twitter context summa-

rization with user in�uence models. In Proceedings of the 6th international conference on

Web search and data mining (WSDM), 2013.

[37] Hassan Nazeer Chaudhry. Flowgraph: Distributed temporal pattern detection over dy-

namically evolving graphs. In Proceedings of the 13th ACM International Conference on

Distributed and Event-based Systems, pages 272�275, 2019.

[38] Nicolas Christin. Traveling the silk road: A measurement analysis of a large anonymous

online marketplace. In Proceedings of the 22nd international conference on World Wide

Web, pages 213�224, 2013.

[39] Charles LA Clarke, Nick Craswell, and Ian Soboro�. Overview of the trec 2004 terabyte

track. In TREC, volume 4, page 74, 2004.

[40] Marco Conoscenti, Antonio Vetrò, Juan De Martin, and Federico Spini. The cloth simu-

lator for htlc payment networks with introductory lightning network performance results.

Information, 9(9):223, 2018.

[41] Kyle Croman, Christian Decke, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed Kosba,

Andrew Miller, Prateek Saxena, Elaine Shi, and Emin Gun Sirer. Ds an, and r. wattenhofer.

146

on scaling decentralized blockchains (a position paper). In 3rd Workshop on Bitcoin and

Blockchain Research, 2016.

[42] Gianmarco De Francisci Morales, Albert Bifet, Latifur Khan, Joao Gama, and Wei Fan.

Iot big data stream mining. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 2119�2120. ACM, 2016.

[43] Nicholas Diakopoulos, Munmun De Choudhury, and Mor Naaman. Finding and assess-

ing social media information sources in the context of journalism. In Proceedings of the

Conference on Human Factors in Computing Systems (CHI), 2012.

[44] Claudia Diaz, Stefaan Seys, Joris Claessens, and Bart Preneel. Towards measuring

anonymity. In International Workshop on Privacy Enhancing Technologies, pages 54�68.

Springer, 2002.

[45] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. Perun: Vir-

tual payment channels over cryptographic currencies. IACR Cryptology ePrint Archive,

2017:635, 2017.

[46] David Easley, Maureen O'Hara, and Soumya Basu. From mining to markets: The evolution

of bitcoin transaction fees. Journal of Financial Economics, 2019.

[47] Felix Engelmann, Henning Kopp, Frank Kargl, Florian Glaser, and Christof Weinhardt.

Towards an economic analysis of routing in payment channel networks. In Proceedings of

the 1st Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers, page 2.

ACM, 2017.

[48] Dániel Fogaras and Balázs Rácz. Scaling link-based similarity search. In Proceedings of

the 14th World Wide Web Conference, pages 641�650, Chiba, Japan, 2005.

[49] Dániel Fogaras, Balázs Rácz, Károly Csalogány, and Tamás Sarlós. Towards Scaling Fully

Personalized PageRank: Algorithms, Lower Bounds, and Experiments. Internet Mathe-

matics, 2(3):333�358, 2005. Preliminary version from the �rst two authors appeared in

WAW 2004.

[50] Daniel Gayo-Avello. A meta-analysis of state-of-the-art electoral prediction from twitter

data. Social Science Computer Review, 2013.

147

[51] Evangelos Georgiadis. How many transactions per second can bitcoin really handle? the-

oretically. IACR Cryptology ePrint Archive, 2019:416, 2019.

[52] Marwan Ghanem, Florent Coriat, and Lionel Tabourier. Ego-betweenness centrality in link

streams. In Proceedings of the 2017 IEEE/ACM International Conference on Advances in

Social Networks Analysis and Mining 2017, ASONAM '17, page 667�674, New York, NY,

USA, 2017. Association for Computing Machinery.

[53] Xavier Glorot and Yoshua Bengio. Understanding the di�culty of training deep feedforward

neural networks. In Yee Whye Teh and Mike Titterington, editors, Proceedings of the

Thirteenth International Conference on Arti�cial Intelligence and Statistics, volume 9 of

Proceedings of Machine Learning Research, pages 249�256. PMLR, 2010.

[54] Steven Goldfeder, Harry A. Kalodner, Dillon Reisman, and Arvind Narayanan. When the

cookie meets the blockchain: Privacy risks of web payments via cryptocurrencies. CoRR,

abs/1708.04748, 2017.

[55] Maoguo Gong, Chuanyu Yao, Yu Xie, and Mingliang Xu. Semi-supervised network em-

bedding with text information. Pattern Recognition, 104:107347, 2020.

[56] Peter Grindrod and Desmond J Higham. A dynamical systems view of network centrality.

In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering

Sciences, volume 470, 2014.

[57] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In

Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 855�864. ACM, 2016.

[58] Cyril Grunspan and Ricardo Pérez-Marco. Ant routing algorithm for the lightning network.

arXiv preprint arXiv:1807.00151, 2018.

[59] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and Arthur Ger-

vais. Sok: O� the chain transactions. IACR Cryptology ePrint Archive, 2019:360, 2019.

[60] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large

graphs. In NIPS, pages 1024�1034, 2017.

[61] William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs:

Methods and applications. arXiv preprint arXiv:1709.05584, 2017.

148

[62] James A Hanley and Barbara J McNeil. The meaning and use of the area under a receiver

operating characteristic (roc) curve. Radiology, 143(1):29�36, 1982.

[63] Monika Rauch Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. Computing on

data streams. External memory algorithms, 50:107�118, 1998.

[64] Jordi Herrera-Joancomartí and Cristina Pérez-Solà. Privacy in bitcoin transactions: new

challenges from blockchain scalability solutions. In International Conference on Modeling

Decisions for Arti�cial Intelligence, pages 26�44. Springer, 2016.

[65] Scott A Hill and Dan Braha. Dynamic model of time-dependent complex networks. Physical

Review E, 82(4):046105, 2010.

[66] Petter Holme and Jari Saramäki. Temporal networks. Physics reports, 519(3):97�125, 2012.

[67] Weishu Hu, Haitao Zou, and Zhiguo Gong. Temporal pagerank on social networks. In In-

ternational Conference on Web Information Systems Engineering, pages 262�276. Springer,

2015.

[68] Chia-Feng Juang and Chin-Teng Lin. An online self-constructing neural fuzzy inference

network and its applications. IEEE transactions on Fuzzy Systems, 6(1):12�32, 1998.

[69] Nobuhiro Kaji and Hayato Kobayashi. Incremental skip-gram model with negative sam-

pling. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language

Processing, pages 363�371, 2017.

[70] Kerem Kaskaloglu. Near zero bitcoin transaction fees cannot last forever. In Proceedings of

the International Conference on Digital Security and Forensics (DigitalSec2014), 06 2014.

[71] Aniket Kate and Ian Goldberg. Using sphinx to improve onion routing circuit construction.

In International Conference on Financial Cryptography and Data Security, pages 359�366.

Springer, 2010.

[72] Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39�

43, 1953.

[73] Rami Khalil and Arthur Gervais. Revive: Rebalancing o�-blockchain payment networks.

In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications

Security, pages 439�453. ACM, 2017.

149

[74] Nida Khan et al. Lightning network: A comparative review of transaction fees and data

analysis. In International Congress on Blockchain and Applications, pages 11�18. Springer,

2019.

[75] Lucianna Ki�er, Dave Levin, and Alan Mislove. Analyzing ethereum's contract topology.

In Proceedings of the Internet Measurement Conference 2018, pages 494�499, 2018.

[76] Hyoungshick Kim and Ross Anderson. Temporal node centrality in complex networks.

Physical Review E, 85(2):026107, 2012.

[77] Kyung Soo Kim and Yong Suk Choi. Incremental iteration method for fast pagerank

computation. In Proceedings of the 9th International Conference on Ubiquitous Information

Management and Communication, page 80. ACM, 2015.

[78] Robin Klusman. Deanonymisation in ethereum using existing methods for bitcoin. 2018.

[79] Ravi Kumar, Jasmine Novak, and Andrew Tomkins. Structure and evolution of online

social networks. In Link mining: models, algorithms, and applications, pages 337�357.

Springer, 2010.

[80] Kristina Lerman, Rumi Ghosh, and Jeon Hyung Kang. Centrality metric for dynamic

networks. In Proceedings of the Eighth Workshop on Mining and Learning with Graphs,

pages 70�77. ACM, 2010.

[81] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densi�cation

laws, shrinking diameters and possible explanations. In Proceedings of the eleventh ACM

SIGKDD international conference on Knowledge discovery in data mining, pages 177�187.

ACM, 2005.

[82] Jia Li, Zhichao Han, Hong Cheng, Jiao Su, Pengyun Wang, Jianfeng Zhang, and Lujia

Pan. Predicting path failure in time-evolving graphs. In Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '19,

page 1279�1289, New York, NY, USA, 2019. Association for Computing Machinery.

[83] Shlomi Linoy, Natalia Stakhanova, and Alina Matyukhina. Exploring ethereum's

blockchain anonymity using smart contract code attribution. 10 2019.

[84] LNBig. Guy makes $20 a month from locking $5 million bitcoin

on the lightning network. https://www.trustnodes.com/2019/08/20/

150

https://www.trustnodes.com/2019/08/20/guy-makes-20-a-month-for-locking-5-million-worth-of-bitcoin-on-the-lightning-network?fbclid=IwAR2-p8nWdg0ayO9S0Uz7qg3wmh_A8Wy6ueX8r3dLQvDTyJaj1ReSbYalnWI
https://www.trustnodes.com/2019/08/20/guy-makes-20-a-month-for-locking-5-million-worth-of-bitcoin-on-the-lightning-network?fbclid=IwAR2-p8nWdg0ayO9S0Uz7qg3wmh_A8Wy6ueX8r3dLQvDTyJaj1ReSbYalnWI

guy-makes-20-a-month-for-locking-5-million-worth-of-bitcoin-on-the-lightning-network?

fbclid=IwAR2-p8nWdg0ayO9S0Uz7qg3wmh_A8Wy6ueX8r3dLQvDTyJaj1ReSbYalnWI.

[85] ltcadmin. 100 bitcoin (btc) community members of wasabi wal-

let make the biggest coinjoin payment ever. https://icowarz.com/

100-bitcoin-btc-community-members-of-wasabi-wallet-make-the-biggest-coinjoin-payment-ever/.

[86] Jiangtao Ma, Yaqiong Qiao, Guangwu Hu, Yongzhong Huang, Arun Kumar Sangaiah,

Chaoqin Zhang, Yanjun Wang, and Rui Zhang. De-anonymizing social networks with

random forest classi�er. IEEE Access, 6:10139�10150, 2017.

[87] Bundit Manaskasemsak, Pramote Teerasetmanakul, Kankamol Tongtip, Athasit Surarerks,

and Arnon Rungsawang. Computing personalized pagerank based on temporal-biased

proximity. In Information Technology Convergence, pages 375�385. Springer, 2013.

[88] Stefano Martinazzi. The evolution of lightning network's topology during its �rst year and

the in�uence over its core values. arXiv preprint arXiv:1902.07307, 2019.

[89] Patrick McCorry, Malte Möser, Siamak F Shahandasti, and Feng Hao. Towards bitcoin

payment networks. In Australasian Conference on Information Security and Privacy, pages

57�76. Springer, 2016.

[90] Andrew McGregor. Graph stream algorithms: a survey. ACM SIGMOD Record, 43(1):9�

20, 2014.

[91] Sarah Meiklejohn and Rebekah Mercer. Möbius: Trustless tumbling for transaction privacy.

Proceedings on Privacy Enhancing Technologies, 2018(2):105�121, 2018.

[92] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy,

Geo�rey M Voelker, and Stefan Savage. A �stful of bitcoins: characterizing payments

among men with no names. In Proceedings of the 2013 conference on Internet measurement

conference, pages 127�140, 2013.

[93] Tomas Mikolov, Kai Chen, Greg Corrado, and Je�rey Dean. E�cient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[94] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Je� Dean. Distributed

representations of words and phrases and their compositionality. In NIPS, pages 3111�3119,

2013.

151

https://www.trustnodes.com/2019/08/20/guy-makes-20-a-month-for-locking-5-million-worth-of-bitcoin-on-the-lightning-network?fbclid=IwAR2-p8nWdg0ayO9S0Uz7qg3wmh_A8Wy6ueX8r3dLQvDTyJaj1ReSbYalnWI
https://www.trustnodes.com/2019/08/20/guy-makes-20-a-month-for-locking-5-million-worth-of-bitcoin-on-the-lightning-network?fbclid=IwAR2-p8nWdg0ayO9S0Uz7qg3wmh_A8Wy6ueX8r3dLQvDTyJaj1ReSbYalnWI
https://www.trustnodes.com/2019/08/20/guy-makes-20-a-month-for-locking-5-million-worth-of-bitcoin-on-the-lightning-network?fbclid=IwAR2-p8nWdg0ayO9S0Uz7qg3wmh_A8Wy6ueX8r3dLQvDTyJaj1ReSbYalnWI
https://icowarz.com/100-bitcoin-btc-community-members-of-wasabi-wallet-make-the-biggest-coinjoin-payment-ever/
https://icowarz.com/100-bitcoin-btc-community-members-of-wasabi-wallet-make-the-biggest-coinjoin-payment-ever/

[95] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, Christopher Cordi, and Patrick McCorry.

Sprites and state channels: Payment networks that go faster than lightning. arXiv preprint

arXiv:1702.05812, 2017.

[96] Alan Mislove, Massimiliano Marcon, Krishna P Gummadi, Peter Druschel, and Bobby

Bhattacharjee. Measurement and analysis of online social networks. In Proceedings of the

7th ACM SIGCOMM conference on Internet measurement, pages 29�42. ACM, 2007.

[97] Michael Mitzenmacher. A brief history of generative models for power law and lognormal

distributions. Internet mathematics, 1(2):226�251, 2004.

[98] Malte Möser and Rainer Böhme. Trends, tips, tolls: A longitudinal study of bitcoin

transaction fees. In International Conference on Financial Cryptography and Data Security,

pages 19�33. Springer, 2015.

[99] Goran Muric, Yusong Wu, and Emilio Ferrara. COVID-19 vaccine hesitancy on social

media: Building a public twitter dataset of anti-vaccine content, vaccine misinformation

and conspiracies. CoRR, abs/2105.05134, 2021.

[100] Shanmugavelayutham Muthukrishnan et al. Data streams: Algorithms and applications.

Foundations and Trends® in Theoretical Computer Science, 1(2):117�236, 2005.

[101] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.org/

bitcoin.pdf, 2008.

[102] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical report,

Manubot, 2019.

[103] Arvind Narayanan, Elaine Shi, and Benjamin IP Rubinstein. Link prediction by de-

anonymization: How we won the kaggle social network challenge. In The 2011 International

Joint Conference on Neural Networks, pages 1825�1834. IEEE, 2011.

[104] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large sparse

datasets. In 2008 IEEE Symposium on Security and Privacy (sp 2008), pages 111�125.

IEEE, 2008.

[105] Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social networks. In 2009 30th

IEEE symposium on security and privacy, pages 173�187. IEEE, 2009.

152

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

[106] Danny Nelson. Inside chainalysis' multimillion-dollar relationship with

the us government. coindesk, 2020. https://www.coindesk.com/

inside-chainalysis-multimillion-dollar-relationship-\with-the-us-government.

[107] Lynnette Hui Xian Ng and Kathleen M. Carley. Flipping stance: Social in�uence on bot's

and non bot's COVID vaccine stance. CoRR, abs/2106.11076, 2021.

[108] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh,

and Sungchul Kim. Continuous-time dynamic network embeddings. In 3rd International

Workshop on Learning Representations for Big Networks, 2018.

[109] Feiping Nie, Wei Zhu, and Xuelong Li. Unsupervised large graph embedding. 2017.

[110] Robert Norvill, Beltran Borja Fiz Pontiveros, Radu State, Irfan Awan, and Andrea Cullen.

Automated labeling of unknown contracts in ethereum. In 2017 26th International Con-

ference on Computer Communication and Networks (ICCCN), pages 1�6. IEEE, 2017.

[111] Naoto Ohsaka, Takanori Maehara, and Ken-ichi Kawarabayashi. E�cient pagerank track-

ing in evolving networks. In Proceedings of the 21th ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, pages 875�884. ACM, 2015.

[112] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric transitivity

preserving graph embedding. In Proceedings of the 22nd ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 1105�1114. ACM, 2016.

[113] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank cita-

tion ranking: Bringing order to the web. Technical Report 1999-66, Stanford University,

1998.

[114] Aditya Pal and Scott Counts. Identifying topical authorities in microblogs. In Proceedings

of the 4th international conference on Web search and data mining (WSDM), 2011.

[115] Róbert Pálovics, András A Benczúr, Levente Kocsis, Tamás Kiss, and Erzsébet Frigó.

Exploiting temporal in�uence in online recommendation. In Proceedings of the 8th ACM

Conference on Recommender systems, pages 273�280. ACM, 2014.

[116] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki

Kanezashi, Tim Kaler, and Charles E Leisersen. Evolvegcn: Evolving graph convolutional

networks for dynamic graphs. AAAI, 2020.

153

https://www.coindesk.com/inside-chainalysis-multimillion-dollar-relationship-\with-the-us-government
https://www.coindesk.com/inside-chainalysis-multimillion-dollar-relationship-\with-the-us-government

[117] James Payette, Samuel Schwager, and Joseph Murphy. Characterizing the ethereum ad-

dress space, 2017.

[118] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social

representations. In Proceedings of the 20th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 701�710. ACM, 2014.

[119] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social

representations. In Proceedings of the 20th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD '14, pages 701�710, New York, NY, USA,

2014. ACM.

[120] Bryan Perozzi, Vivek Kulkarni, and Steven Skiena. Walklets: Multiscale graph embeddings

for interpretable network classi�cation. CoRR, abs/1605.02115, 2016.

[121] Rene Pickhardt. Earn bitcoin with lightning network routing fees and a little data science.

https://www.youtube.com/watch?v=L39IvFqTZk8.

[122] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable o�-chain instant

payments. See https://lightning. network/lightning-network-paper. pdf, 2016.

[123] O�r Press and Lior Wolf. Using the output embedding to improve language models. CoRR,

abs/1608.05859, 2016.

[124] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network

embedding as matrix factorization: Unifying deepwalk, line, pte, and node2vec. In Pro-

ceedings of the Eleventh ACM International Conference on Web Search and Data Mining,

pages 459�467. ACM, 2018.

[125] BitMEX Research. Lightning network (part 7) � propor-

tion of public vs private channels. https://blog.bitmex.com/

lightning-network-part-7-proportion-of-public-vs-private-channels/.

[126] Elias Rohrer, Julian Malliaris, and Florian Tschorsch. Discharged payment channels:

Quantifying the lightning network's resilience to topology-based attacks. arXiv preprint

arXiv:1904.10253, 2019.

[127] Martin Rosvall and Carl T Bergstrom. Mapping change in large networks. PloS one, 5(1),

2010.

154

https://www.youtube.com/watch?v=L39IvFqTZk8
https://blog.bitmex.com/lightning-network-part-7-proportion-of-public-vs-private-channels/
https://blog.bitmex.com/lightning-network-part-7-proportion-of-public-vs-private-channels/

[128] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. Karate Club: An API Oriented

Open-source Python Framework for Unsupervised Learning on Graphs. In Proc. CIKM,

page 3125�3132. ACM, 2020.

[129] Benedek Rozemberczki and Rik Sarkar. Fast sequence based embedding with di�usion

graphs. In International Conference on Complex Networks, pages 99�107, 2018.

[130] Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Alexander Riedel,

Maria Astefanoaei, Oliver Kiss, Ferenc Béres, Guzmán López, Nicolas Collignon, and Rik

Sarkar. Pytorch geometric temporal: Spatiotemporal signal processing with neural machine

learning models. CIKM '21, page 4564�4573, New York, NY, USA, 2021. Association for

Computing Machinery.

[131] Polina Rozenshtein and Aristides Gionis. Temporal pagerank. In Joint European Confer-

ence on Machine Learning and Knowledge Discovery in Databases, pages 674�689. Springer,

2016.

[132] Pierangela Samarati and Latanya Sweeney. Protecting privacy when disclosing information:

k-anonymity and its enforcement through generalization and suppression. 1998.

[133] Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy. Estimating pagerank on graph

streams. Journal of the ACM (JACM), 58(3):13, 2011.

[134] István András Seres, László Gulyás, Dániel A Nagy, and Péter Burcsi. Topological analysis

of bitcoin's lightning network. arXiv preprint arXiv:1901.04972, 2019.

[135] István András Seres, Dániel A Nagy, Chris Buckland, and Péter Burcsi. Mixeth: e�cient,

trustless coin mixing service for ethereum. In International Conference on Blockchain

Economics, Security and Protocols (Tokenomics 2019). Schloss Dagstuhl-Leibniz-Zentrum

fuer Informatik, 2019.

[136] Andrei Serjantov and George Danezis. Towards an information theoretic metric for

anonymity. In International Workshop on Privacy Enhancing Technologies, pages 41�53.

Springer, 2002.

[137] Omer Shlomovits and István András Seres. Sharelock: Mixing for cryptocurrencies from

multiparty ecdsa. Cryptol. ePrint Arch., Tech. Rep, 563:2019, 2019.

155

[138] Jimeng Sun, Christos Faloutsos, Spiros Papadimitriou, and Philip S. Yu. Graphscope:

Parameter-free mining of large time-evolving graphs. In Proceedings of the 13th Interna-

tional Conference on Knowledge Discovery and Data Mining (KDD), 2007.

[139] Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Ma�ei. A 2 l: Anonymous atomic locks

for scalability and interoperability in payment channel hubs. In IACR Cryptology ePrint

Archive, 2019.

[140] Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu, and Bing Qin. Learning sentiment-

speci�c word embedding for twitter sentiment classi�cation. In Proc. ACL, pages 1555�

1565, 2014.

[141] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-

scale information network embedding. In Proceedings of the 24th International Conference

on World Wide Web, pages 1067�1077. International World Wide Web Conferences Steering

Committee, 2015.

[142] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-

scale information network embedding. In Proceedings of the 24th International Conference

on World Wide Web, WWW '15, page 1067�1077, Republic and Canton of Geneva, CHE,

2015. International World Wide Web Conferences Steering Committee.

[143] John Tang, Mirco Musolesi, Cecilia Mascolo, Vito Latora, and Vincenzo Nicosia. Analysing

information �ows and key mediators through temporal centrality metrics. In Proceedings

of the 3rd Workshop on Social Network Systems, page 3. ACM, 2010.

[144] Weizhao Tang, Weina Wang, Giulia Fanti, and Sewoong Oh. Privacy-utility tradeo�s in

routing cryptocurrency over payment channel networks, 2019.

[145] Dane Taylor, Sean A Myers, Aaron Clauset, Mason A Porter, and Peter J Mucha.

Eigenvector-based centrality measures for temporal networks. Multiscale Modeling & Sim-

ulation, 15(1):537�574, 2017.

[146] Christina Te�ioudi, Rainer Gemulla, and Olga Mykytiuk. Lemp: Fast retrieval of large

entries in a matrix product. In Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, pages 107�122. ACM, 2015.

156

[147] Manny Trillo. Stress test prepares visanet for the most wonderful time of the year.

URl: http://www. visa. com/blogarchives/us/2013/10/10/stress-testprepares-visanet-for-

the-most-wonderful-time-of-the-year/index. html, 2013.

[148] Friedhelm Victor. Address clustering heuristics for ethereum. In Proceedings of the 24th Fi-

nancial Cryptography Conference, page 617�633, Berlin, Heidelberg, 2020. Springer-Verlag.

[149] Friedhelm Victor and Bianca Katharina Lüders. Measuring ethereum-based erc20 token

networks. In International Conference on Financial Cryptography and Data Security, pages

113�129. Springer, 2019.

[150] Sebastiano Vigna. A weighted correlation index for rankings with ties. In Proceedings of

the 24th International Conference on World Wide Web (WWW), 2015.

[151] Isabel Wagner and David Eckho�. Technical privacy metrics: a systematic survey. ACM

Computing Surveys (CSUR), 51(3):1�38, 2018.

[152] Peilu Wang, Yao Qian, Frank K Soong, Lei He, and Hai Zhao. A uni�ed tagging solu-

tion: Bidirectional lstm recurrent neural network with word embedding. arXiv preprint

arXiv:1511.00215, 2015.

[153] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. Community

preserving network embedding. AAAI'17, page 203�209. AAAI Press, 2017.

[154] Xiaokai Wei, Linchuan Xu, Bokai Cao, and Philip S. Yu. Cross view link prediction by

learning noise-resilient representation consensus. In Proceedings of the 26th International

Conference on World Wide Web, WWW '17, page 1611�1619. International World Wide

Web Conferences Steering Committee, 2017.

[155] Jianshu Weng, Ee-Peng Lim, Jing Jiang, and Qi He. Twitterrank: �nding topic-sensitive

in�uential twitterers. In Proceedings of the 3rd international conference on Web search and

data mining (WSDM), 2010.

[156] Barry Whitehat. Miximus: zksnark-based trustless mixing for ethereum. github, 2018.

https://github.com/barryWhiteHat/miximus.

[157] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger.

Ethereum project yellow paper, 151(2014):1�32, 2014.

157

https://github.com/barryWhiteHat/miximus

[158] Xindong Wu, Vipin Kumar, J Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda,

Geo�rey J McLachlan, Angus Ng, Bing Liu, S Yu Philip, et al. Top 10 algorithms in data

mining. Knowledge and information systems, 14(1):1�37, 2008.

[159] Shuang Yang and Bo Yang. Enhanced network embedding with text information. In 2018

24th International Conference on Pattern Recognition (ICPR), pages 326�331. IEEE, 2018.

[160] Yanwei Yu, Huaxiu Yao, Hongjian Wang, Xianfeng Tang, and Zhenhui Li. Representa-

tion learning for large-scale dynamic networks. In International Conference on Database

Systems for Advanced Applications, pages 526�541. Springer, 2018.

[161] Yuhui Zhang, Dejun Yang, and Guoliang Xue. Cheapay: An optimal algorithm for fee

minimization in blockchain-based payment channel networks. In ICC 2019-2019 IEEE

International Conference on Communications (ICC), pages 1�6. IEEE, 2019.

[162] Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng

Li. T-gcn: A temporal graph convolutional network for tra�c prediction. IEEE Transac-

tions on Intelligent Transportation Systems, 21(9):3848�3858, 2020.

[163] Chang Zhou, Yuqiong Liu, Xiaofei Liu, Zhongyi Liu, and Jun Gao. Scalable graph embed-

ding for asymmetric proximity. Proceedings of the AAAI Conference on Arti�cial Intelli-

gence, 31(1), Feb. 2017.

[164] Yunyue Zhu and Dennis Shasha. Statstream: Statistical monitoring of thousands of data

streams in real time. In Proceedings of the 28th international conference on Very Large

Data Bases, pages 358�369. VLDB Endowment, 2002.

[165] Wei Zhuo, Qianyi Zhan, Yuan Liu, Zhenping Xie, and Jing Lu. Context attention hetero-

geneous network embedding. Computational intelligence and neuroscience, 2019, 2019.

[166] Indre �liobaite, Albert Bifet, Mohamed Gaber, Bogdan Gabrys, Joao Gama, Leandro

Minku, and Katarzyna Musial. Next challenges for adaptive learning systems. ACM

SIGKDD Explorations Newsletter, 14(1):48�55, 2012.

[167] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu. Embedding

temporal network via neighborhood formation. In Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, pages 2857�2866. ACM,

2018.

158

	Introduction
	Our contributions
	Presentation overview
	Credits

	Temporal networks
	Edge streams
	Twitter Tennis data sets
	Data collection
	Dynamic node relevance label

	Temporal walk based centrality metric for graph streams
	Our results
	Review of related work
	Path counting centrality metrics
	Temporal PageRank

	Temporal Katz centrality
	Update formula
	Time complexity
	Normalization for numeric stability
	Convergence properties

	Unsupervised evaluation
	Stability vs. changeability
	Adaptation to concept drift

	Supervised evaluation
	Baseline metrics
	Results

	Conclusion

	Node embeddings in dynamic graphs
	Our results
	Review of related work
	Dynamic Vector Space Embedding Methods in Edge Streams
	Similarity based on reachability through short temporal walks
	Online Learning of Second Order Node Similarity

	Similarity Search Experiments
	Evaluation Metrics
	Baseline Models
	Results

	Conclusion

	Vaccine skepticism detection by network embedding
	Introduction
	Data collection
	Results
	Conclusion

	Profiling and Deanonymizing Ethereum Users
	Our results
	Background
	Ethereum basics
	Ethereum Name Service
	Non-custodial mixers

	Review of related work
	Data collection
	Evaluation measures
	Linking Ethereum accounts of the same user
	Ground truth data
	Time-of-day transaction activity
	Gas price distribution
	Graph representation learning
	Evaluation

	Deanonymizing trustless mixing services
	Ground truth data
	Elapsed time between deposits and withdrawals, withdraw address reuse
	Deanonymization performance

	Maintaining privacy
	Conclusion

	Cryptoeconomic traffic analysis of Bitcoin's Lightning network
	Our results
	Background
	Payment channel networks
	Routing in LN and Fee Mechanism

	Review of related work
	Data collection
	Dynamics of LN
	LN snapshots with routing fees

	Lightning Network Traffic Simulator
	Feasibility Validation and Choice of Parameters
	Traffic Simulator Response to Parameter Changes

	Transaction Fee Competition
	Profitability Estimation of Central Routers
	Payment Privacy
	Conclusion

	Summary
	List of abbreviations
	Bibliography

