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In the last decade, network science was �ourishing since graph structures underlie several appli-
cations that we use during our daily routine. Social networks are probably the largest source
for graph data. Facebook and Instagram both gained billions of new active users during this
period1. Another important graph data source is related to mobility, �ights between cities, ride-
hailing, or route-planning applications. Finally, for most cryptocurrencies, there is an underlying
transaction network where users exchange their coins or other funds without any governmental
or third-party supervision. In contrast to most social network and user mobility platforms,
the user interactions for various cryptocurrency networks are available to everyone due to the
public nature of the blockchain. That is why Bitcoin and Ethereum, the two most well-known
cryptocurrency networks, are also in the focus of my research.

A general problem with graph data is that it cannot be fed to classical machine learning meth-
ods in a straightforward way. Algorithms like logistic regression, decision trees or deep neural
networks only work well with tabular data. Due to the irregular size of node neighborhoods,
raw network data cannot be considered tabular. One possibility to solve general graph mining
tasks such as node classi�cation, link prediction, or community detection is to learn a vector
space representation of network nodes for downstream machine learning tasks. Research in the
related �eld of node embedding was recently catalyzed by the Word2Vec algorithm [8] for learn-
ing word representations in human language text. The main idea of network embedding is to
explore the graph through multiple random walks and feed these node sequences to a neural
network architecture (e.g. Skip-Gram model) that learns a representation for every node. The
time complexity of this technique is linear in the number of vertices thus it can also be deployed
for large networks with millions of nodes.

Unfortunately, linear time complexity in the number of nodes can be prohibitive for real-time
dynamic network applications. In many data-intensive tasks where interactions between network
participants are constantly arriving over time, we need to update graph mining models regularly
to capture the latest changes in the data distribution, such as sudden bursts in popularity or
some irregular network behavior. Fitting batch algorithms for large graph snapshots could cause
a signi�cant time-delay in the prediction. That is why online graph learning techniques are much
preferred in these scenarios.

The main goal of our research is to analyze and model user behavior in social and cryptocurrency
networks. Speci�cally, we intend to answer the following questions:

� What are the main advantages of online graph mining techniques over batch models for
large-scale social networks and how to best compare their performance? In our research,
we focus on graph centrality and node embedding techniques.

� How to mine cryptocurrency networks with novel network science tools to answer open
questions in the domain of cryptoeconomics and privacy?

By collecting various new Twitter and cryptocurrency network data sets, we were among the �rst
to deploy and analyze node embedding models in several network applications such as vaccine
skepticism detection or Ethereum address deanonymization.

Our �ndings are related to the �elds of network science and machine learning. In our work, we
analyze user interactions in social and cryptocurrency networks as well as user-related metadata
that we used to formulate supervised evaluation for most of the addressed graph mining tasks.

1https://www.businessofapps.com/data/facebook-statistics/, https://www.businessofapps.com/data/instagram-
statistics/
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Our contributions

Next, we explain our main results one by one. For each topic, we list our main contributions and
the original source of publication.

1 Temporal networks

First, we introduce temporal networks by laying out the theoretical background for two dynamic
graph computational models, the snapshot-based and the edge stream approaches. We rigorously
compare these concepts by following the arguments in our recent tutorial:

[BBKP2021] András Benczúr, Ferenc Béres, Domokos Kelen, and Róbert Pálovics. Tutorial
on graph stream analytics. DEBS '21, page 168�171, New York, NY, USA, 2021.
Association for Computing Machinery.

In order to quantitatively analyze the performance of selected online graph algorithms, I collected
two Twitter data sets, RG17 and UO17, related to Roland-Garros 2017, the French Open Tennis
Tournament, and to US Open 2017, the United States Open Tennis Championship. For both of
these sport events, I collected tweets containing prede�ned hashtags, and then I extracted the
underlying @-mention network. The following properties make RG17 and UO17 highly suitable
for evaluating algorithms on dynamic graphs:

� Temporal @-mention network: every @-mention link in the graph has a timestamp covering
a long time range.

� Large scale: both mention graph contains more than 300K edges and 70K nodes (Twitter
accounts).

� Dynamic temporal ground truth information available from an external source, which
makes supervised evaluation possible for edge stream based online graph algorithms. Based
on the o�cial event schedule, I compiled a binary node relevance label with daily granu-
larity for the nodes of the RG17 and UO17 mention networks.

We �rst described the RG17 and UO17 Twitter collections in

[BPOB2018] Ferenc Béres, Róbert Pálovics, Anna Oláh, and András A Benczúr. Temporal
walk based centrality metric for graph streams. Applied Network Science, 3(32):26,
2018.

Both of these data sets were included in a publication that received the best resource paper
award at CIKM '21,

[R+2021] Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Alexander
Riedel, Maria Astefanoaei, Oliver Kiss, Ferenc Béres, Guzmán López, Nicolas
Collignon, and Rik Sarkar. Pytorch geometric temporal: Spatiotemporal signal
processing with neural machine learning models. CIKM '21, page 4564�4573, New
York, NY, USA, 2021. Association for Computing Machinery.

2 Temporal walk based centrality metric for graph streams

The de�nitions of centrality can vary greatly and can incorporate both global and local factors
of a user's location within the social network [2]. For temporal networks, a few generalizations
of static centrality measures to dynamic settings have been suggested recently [1,5, 7,10,11]. In
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Figure 1: De�nition of temporal Katz centrality: weighted sum of time-respecting walks ending
at node u up to time t.

these works, tracking centrality of a single node and determining its variability play a major
role [11], as it has been observed in the literature that centrality of nodes can change drastically
from one time period to another [3].

We addressed a practically important variant of dynamic centrality: Our goal was to compute
online updateable measures that can be computed from a data stream of time-stamped edges.
The above results [1,5,7,10,11], however, cannot be used for computing and updating centrality
online. To the best of our knowledge, only two previous studies [4, 9] propose data stream
updateable centrality measures. Our approach is similar to [9] that also uses the notion of
time-respecting walks to extend PageRank to the edge stream dynamic graph model.

Our contributions:

Thesis 1: We de�ned temporal Katz centrality, an online updateable centrality metric based on
time-respecting walks, as illustrated in Figure 1.

� We de�ned the Temporal Katz centrality of node u at a given time t as the weighted sum
of all time-respecting walks that end in u up to time t.

� We incorporated arbitrary time decay functions in our Temporal Katz centrality measure
that can be adapted to the task in question.

� We gave online update algorithms for Temporal Katz, making it ideal for data-intensive
applications.

� We gave two convergence theorems that mathematically justify the connection between our
method and Katz index [6].

� We conducted a supervised evaluation on our Twitter data collections, RG17 and UO17,
introduced in the previous chapter. Using only network centrality, we tried to detect daily
tennis player accounts as early as possible. Our measurements on these data sets show
that temporal Katz centrality outperforms both static and online baselines.

� Finally, we performed extensive parameter analysis for properties such as score variability
between consecutive snapshots as well as adaptation to concept drift.

Our results are published in
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[BPOB2018] Ferenc Béres, Róbert Pálovics, Anna Oláh, and András A Benczúr. Temporal
walk based centrality metric for graph streams. Applied Network Science, 3(32):26,
2018.

3 Node embeddings in dynamic graphs

Next, I investigated methods to encode (embed) the nodes of a dynamic network by vectors in
a low-dimensional vector space in a way that representations in the embedded space re�ect the
neighborhood or structural properties of the nodes in the original graph.

Over the last years, a myriad of static node embedding methods have been proposed and ap-
plied in node classi�cation and link prediction tasks. In our work, we propose two data stream
updateable node embedding methods, StreamWalk and Online Second Order Similarity, with an
application similar to static embedding models.

Our contributions:

Thesis 2: We proposed two online updateable node embedding algorithms, StreamWalk and On-
line Second Order Similarity, that are both able to e�ciently maintain representations of network
nodes as the graph evolves over time.

� We described StreamWalk, an online node embedding algorithm. Similar to temporal Katz
centrality [BPOB2018], StreamWalk is also based on time-respecting walks.

� We described Online Second Order Similarity, which directly learns the neighborhood sim-
ilarity of node pairs in the graph stream by approximating their neighborhood Jaccard
similarity at a given time.

� We conducted supervised node similarity search evaluation on our RG17 and UO17 Twitter
data collections. We showed that our models can e�ciently di�erentiate daily tennis player
accounts from other network participants. Our measurements on these data sets show that
our online node embedding models outperform static baselines such as LINE, node2vec or
DeepWalk.

� Finally, we showed that the combination of StreamWalk and Online Second Order Similarity
further improves the accuracy of similarity search.

Our results are published in

[BKPB2019] Ferenc Béres, Domokos M. Kelen, Róbert Pálovics, and András A Benczúr. Node
embeddings in dynamic graphs. Applied Network Science, 4(64):25, 2019.

4 Vaccine skepticism detection by network embedding

As an application, we deploy node embedding models for vaccine skepticism detection. We
analyze social network data related to Covid-19 vaccination. We focus on two groups of people
commonly referred to as pro-vaxxers and vax-skeptic users. In short, the �rst group supports
vaccination, while the second questions vaccine e�cacy or the need for general vaccination against
Covid-19. We intended to develop techniques that can e�ciently di�erentiate content based on
the expressed vaccine view.

Our contributions are the following:
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Figure 2: Vax-skeptic topic space uncovered by node embeddings. In the center, there are anti-
vaxxer topics (e.g. child death cases, fear from the mRNA technology) that are surrounded by
less o�ensive discussions (e.g. politics, medical arguments, immunity concerns).

Thesis 3: By learning meaningful information from the Twitter reply network, node embedding
models can e�ciently detect vaccine skepticism in online content (tweets).

� We collected and annotated a large Twitter data set related to Covid-19 vaccination.

� We quantitatively assessed the performance of node embedding for the task of vaccine
skepticism detection by deploying them on the reply network that we extracted from the
data.

� By training a binary classi�er to predict the expressed vaccine view for each tweet, we
found that node embedding models can signi�cantly improve performance compared to
text-only approaches. Furthermore, they can even reveal pro-vaxxer and vax-skeptic user
clusters as well as their underlying topic hierarchy, see Figure 2.

� We released our data and source code on GitHub.

We presented our results at a conference:

[BCMB2021] Ferenc Béres, Rita Csoma, Tamás Vilmos Michaletzky, and András A. Benczúr.
Vaccine skepticism detection by network embedding. In Book of Abstracts of the
10th International Conference on Complex Networks and Their Applications, pages
241�243, 2021.

5 Pro�ling and Deanonymizing Ethereum Users

Ethereum is the largest public blockchain by usage. It is an account-based cryptocurrency where
users store their assets in accounts that they tend to frequently re-use to interact with a wide
range of services and decentralized applications (e.g. games, exchanges). As it is a blockchain-
based cryptocurrency, the transaction history for each account is publicly observable.

In our experiment, I embedded the nodes of the Ethereum transaction graph to pro�le and
deanonymize Ethereum users based on their network activity. The nodes in this graph are
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Ethereum addresses (accounts) and the transactions are directed links between them. Each
physical entity (e.g. users, companies) may own multiple addresses, and the exact address-
entity relations are usually hidden from the public. Thus, I rigorously analyze the Ethereum
transaction network to reveal these connections. In the cryptocurrency domain, we were the
�rst to quantitatively assess the performance of a recent area of machine learning in graphs, the
so-called node embedding algorithms.
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Figure 3: Deanonymization task: �nd accounts of the same user. AUC is presented for 13 node
embedding models as well as time-of-day activity and gas price pro�le based baselines (horizontal
lines).

Our contributions:

Thesis 4: Node embedding models can e�ciently link addresses that belong to the same user.

� We collected Ethereum related data from several sources, including Ethereum name service
(ENS), Etherscan blockchain explorer, Tornado Cash mixer contracts, and Twitter.

� Using ENS identi�ers as ground truth information, we quantitatively compared multiple
node embedding models in a deanonymization task where we link accounts of the same
user. As illustrated in Figure 3, some node embedding methods signi�cantly outperform
user activity based baselines.

� As a direct application, we showed that node embedding based pro�ling can signi�cantly
decrease the privacy guarantees of the Tornado Cash (TC) mixer service, which was origi-
nally proposed to obfuscate the relationship between addresses of the same user.

� Finally, in light of our results, we proposed a few best practices for Ethereum users to
follow in order to increase their privacy.

Our results appeared in

[BSBQ2021] Ferenc Béres, István András Seres, András A Benczúr, and Mikerah Quintyne-
Collins. Blockchain is watching you: Pro�ling and deanonymizing ethereum users.
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In 2021 IEEE International Conference on Decentralized Applications and Infras-
tructures (DAPPS), pages 69�78, 2021.

6 Cryptoeconomic tra�c analysis of Bitcoin's Lightning network

Finally, we analyzed the Lightning Network (LN), a payment channel network that was designed
to solve Bitcoin's scalability issues. It allows participants to exchange transactions locally, with-
out broadcasting them to the blockchain. Thus, LN opens the way for instant low-value payments
with negligible fees.

In a payment channel network, nodes are users and the edges are payment channels. A given
node can issue payments only to those participants that it can reach through a series of edges.
Intermediary nodes of a given payment path can independently decide the transaction fees that
they charge for relaying the payment.

Our contributions:

As original LN payments are cryptographically hidden from us, we designed a payment tra�c
simulator to quantitatively con�rm several concerns related to LN that the cryptocurrency com-
munity had been speculating about for a long time. A main contribution compared to previous
simulation-based studies was that we managed to identify more than 100 merchant nodes on LN.

Thesis 5: By simulating LN payments from ordinary users towards merchants, we found that
central router nodes have (1) low annual RoI, and (2) strong statistical evidence on payment
sender and receiver nodes.

By simulating payments at di�erent value and daily transaction volume levels, we made several
observations related to the state of LN in 2019:

� We concluded that low routing fees do not su�ciently compensate the routing nodes that
essentially hold the network together. Based on our measurements, the annual return of
investment (RoI) for every major router is less than 4%. However, they could achieve
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Figure 4: RoI gain after reducing node capacities to the given fractions.
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signi�cantly better RoI, shown in Figure 4, by reducing capacity on their currently over-
provisioned payment channels.

� We further assessed the importance of router entities by monitoring the changes in the
number of failed payments after we exclude them one by one from LN.

� Finally, we observed that despite onion routing, routers can gather strong statistical evi-
dence about the sender and receiver of LN payments, since a substantial portion of pay-
ments involves only a single routing intermediary. Thus, we propose to use longer, subop-
timal paths to gain more privacy. Our genetic algorithm based solution only marginally
increases the costs for LN users.

Our results were published in

[BSB2021] Ferenc Béres, István András Seres, and András A Benczúr. A cryptoeconomic
tra�c analysis of bitcoin's lightning network. Cryptoeconomic Systems, 1(1), 2021.

7 Credits

The �rst part of my research is related to temporally evolving networks. We developed new
online network centrality and node embedding techniques that outperformed existing snapshot-
based approaches. In this work, I collected and annotated dynamic network data, implemented
and measured most of the algorithms. Róbert Pálovics and Domokos Miklós Kelen participated
in node embedding model implementations [BKPB2019]. They also veri�ed experimental results
and contributed to algorithm descriptions in our articles [BPOB2018,BKPB2019].

My research related to cryptocurrency networks published in [BSB2021,BSBQ2021] is joint work
with István András Seres, who contributed with his knowledge on cryptocurrencies, de�ned the
problems, and described the cryptocurrency related background in both papers. The analysis of
the basic graph properties of the Bitcoin Lightning Network and their change in time [BSB2021]
is also his contribution. In our works, I designed, implemented, and evaluated the experiments
related to tra�c simulation and node embedding. Finally, I augmented and collected Bitcoin and
Ethereum related cryptocurrency network data sets that are rigorously assessed in my Thesis.

My Publications

[BBKP2021] András Benczúr, Ferenc Béres, Domokos Kelen, and Róbert Pálovics. Tutorial
on graph stream analytics. DEBS '21, page 168�171, New York, NY, USA, 2021.
Association for Computing Machinery.

[BCMB2021] Ferenc Béres, Rita Csoma, Tamás Vilmos Michaletzky, and András A. Benczúr.
Vaccine skepticism detection by network embedding. In Book of Abstracts of the
10th International Conference on Complex Networks and Their Applications, pages
241�243, 2021.

[BKPB2019] Ferenc Béres, Domokos M. Kelen, Róbert Pálovics, and András A Benczúr. Node
embeddings in dynamic graphs. Applied Network Science, 4(64):25, 2019.

[BPOB2018] Ferenc Béres, Róbert Pálovics, Anna Oláh, and András A Benczúr. Temporal walk
based centrality metric for graph streams. Applied Network Science, 3(32):26, 2018.

[BSB2021] Ferenc Béres, István András Seres, and András A Benczúr. A cryptoeconomic
tra�c analysis of bitcoin's lightning network. Cryptoeconomic Systems, 1(1), 2021.
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[BSBQ2021] Ferenc Béres, István András Seres, András A Benczúr, and Mikerah Quintyne-
Collins. Blockchain is watching you: Pro�ling and deanonymizing ethereum users.
In 2021 IEEE International Conference on Decentralized Applications and Infras-
tructures (DAPPS), pages 69�78, 2021.

[R+2021] Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Alexan-
der Riedel, Maria Astefanoaei, Oliver Kiss, Ferenc Béres, Guzmán López, Nicolas
Collignon, and Rik Sarkar. Pytorch geometric temporal: Spatiotemporal signal
processing with neural machine learning models. CIKM '21, page 4564�4573, New
York, NY, USA, 2021. Association for Computing Machinery.
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